Categorical Topology — Its Origins, as Exemplified by the Unfolding of the Theory of Topological Reflections and Coreflections before 1971

Part of the History of Topology book series (HIPO, volume 1)


“Man is a being, intelligent and gifted with the faculty of comprehending the abstract. Thanks to this faculty, man has conceived the ideal, and realized poesy; he has conceived the infinite, and created mathematics. Such is the immense distinction which separates the human race so widely from the animals, which makes him a being apart and absolutely new upon the globe. Comprehending the ideal and the infinite, creating poetry and algebra, such is man! To find and understand this formula
$${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$$
, or the algebraic idea of negative quantities, this is the peculiar characteristic of man.”


Topological Space Compact Space Hausdorff Space Regular Space Categorical Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adâmek, J., H. Herrlich and G.E. Strecker (1990), Abstract and Concrete Categories. The Joy of Cats. Wiley, New York. MR 91h: 18001Google Scholar
  2. Adâmek, J. and J. Rosickÿ (1988), Intersections of reflective subcategories. Proc. Amer. Math. Soc. 103, 710–712. MR 89e: 18003Google Scholar
  3. Alexandroff P. (1935), Sur les espaces discrets. Comptes Rendus Acad. Sci. Paris 200 1649–1651.Google Scholar
  4. Alexandroff P. (1937), Diskrete Räume. Mat. Sbornik 2 501–519.Google Scholar
  5. Alexandroff P. (1939), Bikompakte Erweiterungen topologischer Räume. [Russ., German Summary] Mat. Sbornik (N.S.) 5 (47) 403–423. MR 1–318.Google Scholar
  6. Alexandroff P. (1947), On the concept of space in topology. Uspehi Matem. Nauk (N.S.) 2 no. 1 (17), 5–57. MR 10–389Google Scholar
  7. Alexandroff, P. and H. Hopf (1935), Topologie I, Springer Verlag, Berlin.Google Scholar
  8. Alexandroff, P. and P. Urysohn (1923), Une condition nécessaire et suffisante pour qu’une espace (L) soit une classe (D). Compt. Rend. Acad. Sci. Paris 177, 1274–1276.Google Scholar
  9. Alexandroff, P. and P. Urysohn (1929), Mémoire sur les espaces topologiques compacts. Verh. Nederl. Akad. Wetensch. Afd. Naturk. Sect. I, 14, 1–96.Google Scholar
  10. Arens, R. and J. Dugundji (1951), Topologies for function spaces. Pacific J. Math. 1, 5–31. MR 13–264Google Scholar
  11. Arhangel’skii, A.V. (1963), Bicompact sets and the topology of spaces. Dokl. Akad. Nauk, SSSR, 150 9–12 = Soviet Math. 4 561–564. MR 27#720Google Scholar
  12. Arhangel’skii, A.V., R. Isler and G. Tironi (1986), On pseudo—radial spaces. Comment. Math. Univ. Carolinae 27, 137–154. MR 88b: 54005Google Scholar
  13. Artin, M., A. Grothendieck and J. Verdier (1963/64), Séminaire de Géométrie Algébrique du Bois—Marie (SGA4) [rev. ed.: Théorie des Topos et Cohomologie Etale des Schémas. Springer Lecture Notes Math. 269 (1972). MR 50#7130].Google Scholar
  14. Aull, C.E. (1985), Rings of Continuous functions. Lect. Notes Pure Appl. Math. 95, Marcel Dekker, New York. MR 86g: 54001Google Scholar
  15. Baer, R. and F. Levi (1932), Stetige Funktionen in topologischen Räumen. Math. Z. 34, 110–130.MathSciNetCrossRefGoogle Scholar
  16. Bageley, R.W. and J.S. Yang (1966), On k—spaces and function spaces. Proc. Amer. Math. Soc. 17 703–705. MR 33#693Google Scholar
  17. Banaschewski, B. (1953), Untersuchungen über Filterräume. ThesisGoogle Scholar
  18. Univ. Hamburg. (1955), Über nulldimensionale Räume. Math. Nachrichten 13 129–140. MR 19–157Google Scholar
  19. Univ. Hamburg. (1964), Extensions of topological spaces. Canad. Math. Bull. 7 1–22. MR 28#4501Google Scholar
  20. Banaschewski, B. and J. M. Maranda (1961), Proximity functions. Math. Nachr. 23 1–37. MR 29#2768MathSciNetzbMATHCrossRefGoogle Scholar
  21. Banaschewski, B. and C. J. Mulvey (1980), Stone—tech compactification of locales I. Houston J. Math. 6, 301–312. MR 82b: 06010Google Scholar
  22. Banaschewski, B. and C. J. Mulvey (1984), Stone—tech compactification of locales II. J. Pure Appl. Algebra 33, 107–122. MR 86d: 06009Google Scholar
  23. Baron, S. (1968), The coreflective subcategory of sequential spaces. Canad. Math. Bull. 11, 603–604. MR 38#5158Google Scholar
  24. Baron, S. (1968a), Note on epi in To. Canad. Math. Bull. 11, 503–504. MR 38#3315Google Scholar
  25. Baron, S. (1969), Reflectors as compositions of epireflectors. Trans. Amer. Math. Soc. 136 499–508. MR 38#4535MathSciNetzbMATHCrossRefGoogle Scholar
  26. Behrend, F. A. (1957), Uniformizability and compactifiability of topological spaces. Math. Zeitschr. 67 203–210. MR 19–298MathSciNetzbMATHCrossRefGoogle Scholar
  27. Bentley, H. L. and H. Herrlich (1979), Completeness for nearness spaces. Amsterdam Mathem. Centre Tracts 115, 29–40. MR 81c: 54046MathSciNetGoogle Scholar
  28. Bentley, H. L., H. Herrlich and M: Husek (1994), History of uniform structures. This handbook.Google Scholar
  29. Birkhoff, G. (1935), A new definition of limit. Bull. Amer. Math. Soc. 41, 636.Google Scholar
  30. Birkhoff, G. (1937), Moore-Smith convergence in general topology. Ann. Math. 38, 39–56.Google Scholar
  31. Blanksma, T. (1968), Lattice characterizations of topologies and compactifications. Thesis, Univ. Utrecht.Google Scholar
  32. Blefko, E. (1965), On E-compact spaces. Thesis, Penn. State University.Google Scholar
  33. Blefko, E. (1972), Some classes of E-compactness. Austr. Math. J. 13 492–500. MR 47#2552Google Scholar
  34. Blefko, E. and S. Mrówka (1966), On the extensions of continuous functions from dense subspaces. Proc. Amer. Math. Soc. 17 1396–1400. MR 34#1989Google Scholar
  35. Borel, E. (1903), Sur l’approximation des nombres par des nombres rationells. Comptes Rendue Acad. Paris 136, 1054–1055.Google Scholar
  36. Bourbaki, N. (1939), Eléments de Mathématique I,Théorie des ensembles, Fascicule de résultats. Actualités Scientifiques et Industrielles 846 HerrmannGoogle Scholar
  37. Paris. MR 3–55 (1940), Topologie générale. Ch. I Structures topologiques, Ch. II Structures uniformes. Actualités Scientifiques et Industrielles 858 HerrmannGoogle Scholar
  38. Paris. MR 3–55 (1948), Algèbre. Ch. 3 Algèbre multilinéaire. Actualités Scientifiques et Industrielles 1044, Herrmann, Paris. MR 10–231Google Scholar
  39. Paris. MR 3–55 (1957), Théorie des ensembles,Ch. 4 Structures. Actualités Scientifiques et Industrielles 1258 Herrmann, Paris. MR 20#3804Google Scholar
  40. Paris. MR 3–55 (1960), Eléments d’histoire des mathématiques. Hermann, Paris. MR 22#4620Google Scholar
  41. Paris. MR 3–55 (1961), Topologie générale. Ch. I Structures topologiques, Ch. II Structures uniformes. Actualités Scientifiques et Industrielles, 3 éd., 1142 Herrmann, Paris. MR 25#4480Google Scholar
  42. Breger, H. (1971), Die Kategorie der kompakt-erzeugten Räume als in TOP coreflektive Kategorie mit Exponentialgesetz. Ms Thesis, Univ. Heidelberg.Google Scholar
  43. Brown, R. (1963), Ten topologies for X x Y. Quart. J. Math., Oxford (2) 14 303–319. MR 28#2516Google Scholar
  44. Brown, R. (1964), Function spaces and product topologies. Quart. J. Math. Oxford 15 238–250. MR 29#2779Google Scholar
  45. Brucker, P. (1968), Ketten-kompakte Räume. Dissertation, Free Univ. Berlin.Google Scholar
  46. Bruns, G. (1962), Darstellungen und Erweiterungen geordneter Mengen I, IL J. Reine Angew. Math. 209 167–200 and 210 1–23. MR 26#1270abGoogle Scholar
  47. Biichi, J.R. (1952), Representations of complete lattices by sets. Portugaliae Math. 11, 151–167. MR 14–940Google Scholar
  48. Cameron, D.E. (1985), The birth of the Stone-tech compactification. In: Rings of Continuous Functions (ed. C.E. Aull), Marcel Dekker, New York, 67–78. MR 86g: 01035Google Scholar
  49. Cartan, H. (1937), Théorie des filtres. Compt. Rendue Acad. Paris 205, 595–598.Google Scholar
  50. Cartan, H. (1937a), Filtres et ultrafiltes. Compt. Rendue Acad. Paris 205, 777–779.Google Scholar
  51. Tech, E. (1937), On bicompactspaces. Ann. Math. 38, 823–844.CrossRefGoogle Scholar
  52. Tech, E. (1966), Topological Spaces. (Revised ed. by Z. Frolik and M. Katétov) J. Wiley, London. MR 35#2254Google Scholar
  53. Chandler, R.E. (1972), An alternative construction of ßX and vX. Proc. Amer. Math. Soc. 32 315–318. MR 45#1120MathSciNetzbMATHGoogle Scholar
  54. Chew, K.P. (1970), A characterization of lei-compact spaces. Proc. Amer. Math. Soc. 26, 679–682. MR 42#2436Google Scholar
  55. Chew, K.P. (1972), N-compact spaces as limits of inverse systems of discrete spaces. J. Austral. Math. Soc. 14 467–469. MR 47#2553Google Scholar
  56. Tincura, J. (1991), Cartesian closed coreflective subcategories of the category of topological spaces. Topol. Appl. 41, 205–212. MR 92m: 18013Google Scholar
  57. Cohen, D.E. (1954), Spaces with weak topology. Quart. J. Math. 5 77–80. MR 16–62Google Scholar
  58. Comfort, W.W. (1968), A theorem of Stone-Cech type, and a theorem of Tychonoff type, without the axiom of choice; and their realcompact analogues. Fund. Math. 63, 97–110. MR 38#5174Google Scholar
  59. Corson, H.H. and J.R. Isbell (1960), Euclidean covers of topological spaces. Quart. J. Math. Oxford (2) 11 34–42. MR 23#A2194Google Scholar
  60. Day, B.J. and G.M. Kelly (1970), On topological quotients preserved by pullbacks and products. Proc. Cambridge Phil. Soc. 67 553–558. MR 40#8024MathSciNetzbMATHCrossRefGoogle Scholar
  61. Dieudonné, J. (1944), Une généralisation des espaces compacts. J. Math. Pure Appl. 23 65–76. MR 7–134zbMATHGoogle Scholar
  62. Dieudonné, J. (1970), The work of Nicholas Bourbaki. Amer. Math. Monthly 77 134–145. MR 40#5402Google Scholar
  63. Dolcher, M. (1960), Topologie e strutture di convergenza. Annali della Scuola Normale Superiore di Pisa, Ser. III 14 63–92. MR 22#5026Google Scholar
  64. Dowker, C.H. (1952), Topology of metric complexes. Amer. J. Math. 74 555–577. MR 13–965Google Scholar
  65. Dudley, R.M. (1964), On sequential convergence. Trans. Amer. Math. Soc. 112 483–507. MR 30#5266Google Scholar
  66. Eda, K., T. Kiyosawa and H. Ohta (1989), N-compactness and its applications. In: Topics in General Toplogy (eds. K. Morita and J. Nagata), North Holland, Amsterdam, 459–521. MR 91m: 54018Google Scholar
  67. Ehresmann, C. (1957), Gattungen von lokalen Strukturen. Jahresber. Deutsch. Math. Verein. 60 49–77. MR 20#2392MathSciNetzbMATHGoogle Scholar
  68. Ehresmann, C. (1967), Sur l’existence de structures libres et de foncteurs adjoints. Cahiers Topol. Géom. Diff. 9 33–180. MR 38#5873Google Scholar
  69. Ehresmann, C. (1969), Construction de structures libres. Springer Lecture Notes Math. 92 74–104. MR 39#6944Google Scholar
  70. Eilenberg S. and S. Mac Lane (1945), General theory of natural equivalences. Trans. Amer. Math. Soc. 58 231–295. MR 7–109Google Scholar
  71. Engelking, R. (1989), General Topology. Heldermann Verlag, Berlin. MR 91c: 54001Google Scholar
  72. Engelking, R. and S. Mrówka (1958), On E-compact spaces. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astr. Phys. 6 429–436. MR 20#3522Google Scholar
  73. Felscher, W. (1965), Adjungierte Funktoren and primitive Klassen. Sitzungsber. Heidelberger Akad. Wiss. 4 447–509. MR 33#2701Google Scholar
  74. Flachsmeyer, J. (1961), Zur Spektralentwicklung topologischer Räume. Math. Annalen 144 253–274. MR 26#735MathSciNetzbMATHCrossRefGoogle Scholar
  75. Fox, R.H. (1945), On topologies for function spaces. Bull. Amer. Math. Soc. 51 429–432. MR 6–278MathSciNetzbMATHCrossRefGoogle Scholar
  76. Franklin, S.P. (1965), Spaces in which sequences suffice. Fund. Math. 57 107–115. MR 31#5184MathSciNetzbMATHGoogle Scholar
  77. Franklin, S.P. (1967), Spaces in which sequences suffice IL Fund. Math. 61 51–56. MR 36#5882MathSciNetzbMATHGoogle Scholar
  78. Franklin, S.P. (1969), Natural Covers. Composito Math. 21 253–261. MR 40#3491Google Scholar
  79. Franklin, S.P. (1971), On epi-reflective hulls. Gen. Topol. Appl. 1 29–31. MR 44#3287Google Scholar
  80. Franklin, S.P. V. Kannan, and T. Soundararajan (1981), Maximality of Stone-Cech topologies. Unpublished manuscript.Google Scholar
  81. Fréchet, M. (1906), Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo 22, 1–74.Google Scholar
  82. Fréchet, M. (1918), Sur la notion de voisinage dans les ensembles abstraits. Bull. Sci. Math. 42, 138–156.Google Scholar
  83. Freyd, P. (1958), The theory of limits. Undergraduate Honors Thesis, Brown Univ.Google Scholar
  84. Freyd, P. (1960), Functor Theory. Thesis, Princeton Univ.Google Scholar
  85. Freyd, P. (1964), Abelian categories. Harper and Row, New York. MR 29#3517Google Scholar
  86. Freyd, P.J. and G.M. Kelly (1972), Categories of continuous functors I. J. Pure Appl. Algebra 2 169–191. MR 48#369Google Scholar
  87. Frolík, Z. (1972), Prime filters with CIP. Comment. Math. Univ. Carolinae 13 553–575. MR 47#4197Google Scholar
  88. Frolík, Z, and S. Mrówka (1971), Perfect images of R- and N-compact spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 19 369–371. MR 46#6288Google Scholar
  89. Gale, D. (1950), Compact sets of functions and function rings. Proc. Amer. Math. Soc. 1 303–308. MR 12–119Google Scholar
  90. Georgescu, G. and B. Lungulescu (1969), Sur les propriétés topologiques des structures ordonn’ees. Revue Roumaine Math. Pure Appl. 14 1453–1456. MR 41#1614Google Scholar
  91. Gelfand, I. and A. Kolmogoroff (1939), On rings of continuous functions on topological spaces. Doklady Akad. Nauk SSR 22, 11–15.Google Scholar
  92. Gelfand, I. and G. Shilov (1941), Über verschiedene Methoden der Einführung der Topologie in die Menge der maximalen Ideale eines normierten Ringes. Rec. Mat. (Mat. Sbornik) N.S. 9 25–38. MR 3–52Google Scholar
  93. Gillman, L. (1985), Rings of continuous functions as rings: a survey. In: Aull, Rings of Continuous Functions, 143–147. MR 86g: 54001Google Scholar
  94. Gillman, L., M. Henriksen and M. Jerison (1954), On a theorem of Gelfand and Kolmogoroff concerning maximal ideals in rings of continuous functions. Proc. Amer. Math. Soc. 5 447–455. MR 16–607Google Scholar
  95. Gillman, L. and M. Jerison (1960), Rings of Continuous Functions. van Nostrand, Princeton, NJ. MR 22#6994Google Scholar
  96. Gleason, A.M. (1958), Projective topological spaces. Illinois J. Math. 2 482–489. MR 22#12509MathSciNetzbMATHGoogle Scholar
  97. Gleason, A.M. (1963), Universal locally connected refinements. Illinois J. Math. 7, 521–531. MR 29#1612MathSciNetzbMATHGoogle Scholar
  98. Gleason, A.M. and R.S. Palais (1957), On a class of transformation groups. Amer. J. Math. 79 631–648. MR 19–663Google Scholar
  99. Goodstein, R.L. (1968), Existence in mathematics. In: Logic and Foundations of Mathematics (eds. D. van Dalen, J.G. Dijkman, S.C. Kleene, and A.S. Troelstra), Wolters—Nordhoff Pu.Co., Groningen, 70–82.Google Scholar
  100. de Groot, J. (1959), Groups represented by homeomorphism groups I. Math. Annalen 138 80–102. MR 22#9959Google Scholar
  101. Grothendieck, A. (1957), Sur quelques points d’algèbre homologique. Tohoku Math. J. (2) 9, 119–221. MR 21#1328Google Scholar
  102. Hager, A. W. (1973), Compactification and completion as absolute closure. Proc. Amer. Math. Soc. 40 635–638. MR 48#9660MathSciNetzbMATHCrossRefGoogle Scholar
  103. Hager, A. W. (1975)Perfect maps and epi—reflective hulls. Canad. J. Math. 27 11–24. MR 51#1751Google Scholar
  104. Hahn, H. (1914), Über die allgemeinste ebene Punktmenge, die stetiges Bild einer Strecke ist. Jahresber. Deutsch. Math. Ver. 23, 318–322.Google Scholar
  105. Hahn, H. (1914a), Mengentheoretische Charakterisierung der stetigen Kurve. Sitzungsber. Akad. Wiss. Wien, Abt. IIa 123, 2433–2489.Google Scholar
  106. Hahn, H. (1921), Über die Komponenten offener Mengen. Fund. Math. 2, 189–192.zbMATHGoogle Scholar
  107. Hajek, D. W. and A. Mysior (1979), On non—simplicity of topological categories. Springer Lecture Notes Math. 719, 84–93. MR 81j: 18009Google Scholar
  108. Hart, H. (1992), The Cech—Stone compactification of the real line. In: Recent Progress in General Topology (eds. M. Husek and J. van Mill), North Holland, Amsterdam, 317–352.Google Scholar
  109. Hausdorff, F. (1914), Grundzüge der Mengenlehre. Veit, Leipzig.zbMATHGoogle Scholar
  110. (1935).
    Gestufte Räume. Fund. Math. 25 486–502.Google Scholar
  111. Henriksen, M. and J.R. Isbell (1958), Some properties of compactifications. Duke Math. J. 25 83–105. MR 20#2689Google Scholar
  112. Herrlich, H. (1962), Ordnungsfähigkeit topologischer Räume. Thesis, Free Univ. Berlin. MR 27#4196Google Scholar
  113. Herrlich, H. (1965), E—kompakte Räume. Habil. Schrift, Free Univ. Berlin.Google Scholar
  114. Herrlich, H. (1965a), Ordnungsfähigkeit total—diskontinuierlicher Räume. Math. Annalen 159 77–80. MR 32#426Google Scholar
  115. Herrlich, H. (1965b), Wann sind alle stetigen Abbildungen in Y konstant? Math. Z. 90 152–154. MR 32#1664Google Scholar
  116. Herrlich, H. (1967), Quotienten geordneter Räume und Folgenkonvergenz. Fund. Math. 61 79–81. MR 364t4528Google Scholar
  117. Herrlich, H. (1967a), Fortsetzbarkeit stetiger Abbildungen und Kompaktheitsgrad topologischer Räume. Math. Z. 96 64–72. MR 34#8370Google Scholar
  118. Herrlich, H. (1967b), E —kompakte Räume. Math. Z. 96 228–255. MR 34#5051Google Scholar
  119. Herrlich, H. (1968), Topologische Reflexionen und Coreflexionen,Springer Lecture Notes Math. 78. MR 41#988Google Scholar
  120. Herrlich, H. (1969), On the concept of reflections in general topology. In: Contricutions to Extension Theory of Topological Structures (eds. J. Flachsmeyer, H. Poppe and F. Terpe), Deutscher Verlag Wiss., Berlin, 105–116. MR 44#2210Google Scholar
  121. Herrlich, H. (1969a), Limit—operators and topological coreflections. Trans. Amer. Math. Soc. 146, 203–209. MR 40#5693Google Scholar
  122. Herrlich, H. (1969b), Topological coreflections. In: Topology and its Applications (ed. D.R. Kurepa ), Beograd, 187–188.Google Scholar
  123. Herrlich, H. (1971), Categorical topology. Gen. Topol. Appl. 1 1–15. MR 44#974Google Scholar
  124. Herrlich, H. (1972), A generalization of perfect maps. In: Gen. Topol. Rel. Mod. Anal. And Aig III. (ed. J. Novak), Academia, Prague, 187–191. MR 50#14634Google Scholar
  125. Herrlich, H. (1974), Cartesian closed topological categories. Math. Colloq. Univ. Cape Town 9 1–16. MR 57#408Google Scholar
  126. Herrlich, H. (1974a), Topological functors. Gen. Topol. Appl. 4 125–142. MR 49#7970Google Scholar
  127. Herrlich, H. (1974b), A concept of nearness. Gen. Topol. Appl. 4, 191–212. MR 50#3193Google Scholar
  128. Herrlich, H. (1983), Categorical topology 1971–1981. In: Gen. Topol. Rel. Mod. Anal. And Algebra V (ed. J. Novak), Heldermann Verlag, Berlin, 297–383. MR 84d: 54016Google Scholar
  129. Herrlich, H. (1984), Universal topology. In: Categorical Topology (eds. H.L. Bentley, H. Herrlich, M. Rajagopalan, and H. Wolff), Heldermann Verlag, Berlin, 223–281. MR 86g: 18004Google Scholar
  130. Herrlich, H. (1986), Einführung in die Topologie. Heldermann Verlag, Berlin. MR 87k: 54001Google Scholar
  131. Herrlich, H. (1993), Compact To—spaces and To—compactifications. Appl. Cat. Structures 1, 111–132.Google Scholar
  132. Herrlich, H. (1995), Compactness and the axiom of choice. Appl. Cat. Structures 3, 1–14.Google Scholar
  133. Herrlich, H. and M. Husek (1990), Galois connections categorically. J. Pure Appl. Algebra 68, 165–180. MR 92f: 06008Google Scholar
  134. Herrlich, H. and M. Husek (1992), Categorical topology. In: Recent Progress in General Topology (eds. M. Husek and J. van Mill), North Holland, Amsterdam, 369–403.Google Scholar
  135. Herrlich, H. and M. Husek (1993), Some open categorical problems in Top. Appl. Cat. Struct. 1, 1–19. MR 94g: 54008Google Scholar
  136. Herrlich, H., G. Salicrup and R. Vazquez (1979), Dispersed factorization structures. Canad. J. Math. 31, 1059–1071. MR 80j: 18006Google Scholar
  137. Herrlich, H. and J. van der Slot (1967), Properties which are closely related to compactness. Indag. Math. 29 524–529. MR 36#5898Google Scholar
  138. Herrlich, H. and G.E. Strecker (1971), Coreflective subcategories,Trans. Amer. Math. Soc. 157 205–226. MR 43#6281Google Scholar
  139. Herrlich, H. and G.E. Strecker (1972), Coreflective subcategories in general topology. Fund. Math. 73 199–218. MR 46#1872Google Scholar
  140. Hewitt, E. (1948), Rings of real—valued continuous funtions. Trans. Amer. Math. Soc. 64 54–99. MR 10–126Google Scholar
  141. Hoffmann, R.E. (1975), Charakterisierung nüchterner Räume. Manuscr. Math. 15 185–191. MR 51#11405Google Scholar
  142. Hoffmann, R.E. (1977), Irreducible filters and sober spaces. Manuscr. Math. 22 365–380. MR 57#4107Google Scholar
  143. Hoffmann, R.E. (1979), On the sobrtfication of the remainder K — X. Pacific J. Math. 83, 145–156. MR 81b: 54024Google Scholar
  144. Hoffmann, R.E. (1979a), Reflective hulls of finite topological spaces. Archiv Math. 33, 258–262. MR 82f: 54015Google Scholar
  145. Hoffmann, R.E. (1984), Co—well—powered reflective subcategories. Proc. Amer. Math. Soc. 90, 45–46. MR 85f: 18002Google Scholar
  146. Hong, S. S. (1973), On k—compactlike spaces and reflective subcategories. Gen. Topol. Appl. 3, 319–330. MR 48#12450Google Scholar
  147. Hong, S. S. (1975), Extensive subcategories of the category of T o —spaces. Canad. J. Math. 27 311–318. MR 51#11406Google Scholar
  148. Husek, M. (1964), S—categories. Comment. Math. Univ. Carolinae 5 37–46. MR 30#4234Google Scholar
  149. Husek, M. (1966), Remarks on reflections. Comment. Math. Univ. Carolinae 7 249–259. MR 34#2659Google Scholar
  150. Husek, M. (1967), One more remark on reflections. Comment. Math. Univ. Carolinae 8 129–137. MR 35#232Google Scholar
  151. Husek, M. (1968), On a problem of H. Herrlich. Comment. Math. Univ. Carolinae 9 571–572. MR 39#6259Google Scholar
  152. Husek, M. (1969), The class of k—compact spaces is simple. Math. Z. 110 123–126. MR 39#6260Google Scholar
  153. Husek, M. (1971), Topological spaces with complete uniformities. Mathem. Centr. Amsterdam ZW 3/71.Google Scholar
  154. Husek, M. (1972), Perfect images of E—compact spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 20 41–45. MR 46#6289Google Scholar
  155. Husek, M. (1972a), Simple categories of topological spaces. In: Gen. Topol. Rel. Mod. Anal. and Alg III (ed. J. Novak), Academia, Prague, 203–207. MR 50#8416Google Scholar
  156. Isbell, J.R. (1957), Some remarks concerning categories and subspaces. Canad. J. Math. 9 563–577. MR 20#923Google Scholar
  157. Isbell, J.R. (1964), Subobjects, adequacy, completeness and categories of algebras. Rozprawy Math. 36 1–32. MR 29#1238Google Scholar
  158. Isbell, J.R. (1964a), Natural sums and abelianizing. Pacific J. Math. 14 1265–1281. MR 31#3478Google Scholar
  159. Isbell, J.R. (1964b), Uniform Spaces. Amer. Math. Soc., Providence, RI. MR 30#561Google Scholar
  160. Isbell, J.R. (1966), Structure of categories,Bull. Amer. Math. Soc. 72 619–655. MR 34#5896Google Scholar
  161. Isbell, J.R. (1987), A distinguishing example in k—spaces. Proc. Amer. Math. Soc. 100, 593–594. MR 88g: 54019Google Scholar
  162. Ishii, T. (1989), The Tychonoff functor and related topics. In: Topics in General Topology (eds. K. Morita and J. Nagata), North Holland, Amsterdam, 203–243. MR 91e: 54028Google Scholar
  163. Jacobson, N. (1945), A topology for the set of primitive ideals in an arbitrary ring. Proc. Nat. Acad. Sci. USA 31, 333–337. MR 7–110Google Scholar
  164. Johnstone, P. T. (1981), Tychonoff’s theorem without the axiom of choice. Fund. Math. 113, 21–35. MR 84h: 03117Google Scholar
  165. Kakutani, S. (1941), Concrete representations of abstract (M)—spaces. Ann. Math. 42 994–1024. MR 3–205Google Scholar
  166. Kakutani, S. (1944), Free topological groups and infinite direct products of topological groups. Proc. Imp. Acad. Tokyo 20 595–598. MR 7–240Google Scholar
  167. Kan, D.M. (1958), Adjoint functors. Trans. Amer. Math. Soc. 87 294–329. MR 24#A1301Google Scholar
  168. Kannan, V. (1970), Coreflective subcategories in topology. Thesis, Madurai Univ.Google Scholar
  169. Kannan, V. (1972), Reflexive cum coreflexive subcategories in topology. Math. Annalen 195, 168–174. MR 45#142Google Scholar
  170. Kannan, V.(1976), On a problem of Herrlich. J. Madurai Univ. 6, 101–104. MR 58#2681Google Scholar
  171. Kannan, V. and M. Rajagopalan (1978), Constructions and applications of rigid spaces I. Advances Math. 29, 89–130. MR 82e: 54045aGoogle Scholar
  172. Kaplansky, I. (1947), Lattices of continuous functions. Bull. Amer. Math. Soc. 53, 617–623. MR 8–587Google Scholar
  173. Katètov, M (1951), Measures in fully normal spaces. Fund. Math. 38, 73–84. MR 14–27MathSciNetzbMATHGoogle Scholar
  174. Kelley, J.L. (1955), General Topology. Van Nostrand, New York. MR 16–1136zbMATHGoogle Scholar
  175. Kelly, G.M. (1969), Monomorphisms, epimorphisms, and pull—backs. J. Austral. Math. Soc. 9, 124–142. MR 39#1515Google Scholar
  176. Kelly, G.M. (1987), On the ordered set of reflective subcategories. Bull. Austral. Math. Soc. 36, 137–152. MR 88K: 18006Google Scholar
  177. Kennison, J.F.(1965), Reflective functors in general topology and elsewhere. Trans. Amer. Math. Soc. 118 303–315. MR 30#4812Google Scholar
  178. Kennison, J.F. (1967), A note on reflection maps. Illinois J. Math. 11 404–409. MR 35#1649Google Scholar
  179. Kennison, J.F. (1968), Full reflective subcategories and generalized covering spaces,Illinois J. Math. 12 353–365. MR 37#2832Google Scholar
  180. Kisynski, J. (1960), Convergence du type,C. Colloqu. Math. 7 205–211. MR 23#A615Google Scholar
  181. KoutnIk, V. (1985), Closure and topological sequential convergence. In: Convergence Structures 1984 (eds. J. Novak, W. Gähler, H. Herrlich, and M. Mikusinski), Akademie Verlag, Berlin, 199–204. MR 87e: 54005Google Scholar
  182. Krein M. and S. Krein (1940), On an inner characteristic of the set of all continuous functions defined on a bicompact Hausdorff space. Doklady USSR 27 427–430. MR 2–222Google Scholar
  183. Kuratowski, K. and W. Sierpuiski (1921), Le théorème de Borel—Lebesgue dans le théorie des ensembles abstraits. Fund. Math. 2, 172–178.Google Scholar
  184. Kuratowski, K. and W. Sierpuiski (1921a), Sur les différences de deux ensembles fermés. Tohoku Math. J. 20, 23.Google Scholar
  185. Lawvere, F.W. (1963), Functorial semantics and algebraic theories. Proc. Nat. Acad. Sci. USA 50 869–872. MR 28#2143Google Scholar
  186. Leader, S. (1970), Regulated bases and completions of regulated spaces. Fund. Math. 67, 279–287.Google Scholar
  187. Lowen—Colebunders, E. (1989), Function Classes of Cauchy Continuous Maps. Marcel Dekker, New York. MR 91c: 54002Google Scholar
  188. Lubkin, S. (1960), Undergraduate Honors Thesis, Columbia Univ.Google Scholar
  189. Lynn, I.L. (1962), Linearly orderable spaces. Proc. Amer. Math. Soc. 13 454–456. MR 25#1536Google Scholar
  190. Mac Lane, S. (1948), Groups, categories and duality,Proc. Nat. Acad. Sci. USA 34 263–267. MR 10–9Google Scholar
  191. Mac Lane, S. (1950), Duality for groups,Bull. Amer. Math. Soc. 56 485–516. MR 14–133Google Scholar
  192. Mac Lane, S. (1989), The development of mathematical ideas by collision: the case of categories and topos theory. In: Categorical Topology (eds. J. Adamek and S. Mac Lane), World Scientific, Singapore, 1–9. MR 91e: 18001Google Scholar
  193. Magill, K.D. and J.A. Glasenapp (1967), 0—dimensional compactifications and Boolean rings. J. Austral. Math. Soc. 8 755–765. MR 41#6740Google Scholar
  194. Manheim, J.H. (1964), The Genesis of Point Set Topology. Pergamon Press, Oxford. MR 37#2561Google Scholar
  195. Markoff, A.A. (1941), On free topological groups. Dokl. Akad. Nauk SSR 31 299–301. MR 3–36Google Scholar
  196. Markoff, A.A. (1945), On free topological groups. Izv. Akad. Nauk SSR, Ser. Mat. 9 3–64. =Topology and Topological Algebra, Translation Ser. 1,8 (1962), 195–272. MR 7–7Google Scholar
  197. Marny, T. (1979), On epireflective subcategories of topological categories. Gen. Topol. Appl. 10, 175–181. MR 80g: 18004Google Scholar
  198. Mazurkievicz, S. (1920), Sur les Lignes de Jordan. Fund. Math. 1, 166–209.Google Scholar
  199. Michael, E. (1968), Local compactness and cartesian products of quotient maps and k-spaces. Ann. Inst. Fourier Grenoble 18 281–286. MR 39#6256Google Scholar
  200. Milgram, A. N. (1949), Multiplicative semigroups of continuous functions. Duke Math. J. 16, 377–383. MR 10–612Google Scholar
  201. van Mill, J. (1984), An introduction to ßw. In: Handbook of Set-Theoretic Topology (eds. K. Kunen and J. E. Vaughan), North Holland, Amsterdam, 503–567. MR 86f: 54027Google Scholar
  202. Mitchell, B. (1965), Theory of Categories. Academic Press, New York and London. MR 34#2647Google Scholar
  203. Moore, G.H. (1982), Zermelo’s Axiom of Choice, Its Origins, Developments, and Influence. Springer, New York.Google Scholar
  204. Moore, R.L. (1922), Concerning connectedness im kleinen and a related property. Fund. Math. 3, 232–237.Google Scholar
  205. Morita, K. (1951), On the simple extension of a space with respect to a uniformity I-IV. Proc. Japan Acad. 27, 65–72,130–137,166–171, and 632–636. MR 14–68, 69, 571Google Scholar
  206. Morita, K. (1956), On decomposition spaces of locally compact spaces. Proc. Japan Acad. 32 544–548. MR 19–49Google Scholar
  207. Morita, K. (1975), Cech cohomology and covering dimension for topological spaces. Fund. Math. 87 31–52. MR 50#14706Google Scholar
  208. Morita, K. and J. Nagata (1989), Topics in General Topology. North Holland, Amsterdam. MR 91a: 54001Google Scholar
  209. Mrówka, S. (1956), On universal spaces. Bull. Acad. Polon. Sci., Cl. III 4 479–481. MR 19–669Google Scholar
  210. Mrówka, S. (1957), Some properties of Q-spaces. Bull. Acad. Polon. Sci. Cl. III 5 947–950. MR 20#1967Google Scholar
  211. Mrówka, S. (1958), A property of Hewitt-extension vX of topological spaces. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 6, 95–96. MR 20#3521Google Scholar
  212. Mrówka, S. (1965), Structures of continuous functions III. Rings and lattices of integervalued continuous functions. Indagationes Math. 27, (=Proc. Kon. Nederl. Akad. van Wetensch. 68) 74–82. MR 38#5861Google Scholar
  213. Mrówka, S. (1966), On E-compact spaces II. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 14 597–605. MR 34#6712Google Scholar
  214. Mrówka, S. (1968), Further results on E-compact spaces I. Acta Math. 120 161–185. MR 37#2165MathSciNetzbMATHCrossRefGoogle Scholar
  215. Mrówka, S. (1970), Structures of continuous functions I. Acta Math. Acad. Sci. Hungar. 21 239–259. MR 42#4601Google Scholar
  216. Mrówka, S. (1972), Recent results on E-compact spaces and structures of continuous functions. Proc. Univ. Oklahoma Topol. Conf. 1972, 168–221. MR 50#11152Google Scholar
  217. Mrówka, S. (1974), Recent results on E-compact spaces. TOPO 72 - Gen. Topol. Appl., 2nd Pittsburgh Int. Conf. 1972, Springer Lecture Notes Math. 378 298–301. MR 50#14673Google Scholar
  218. Mrówka S. and S. Shore (1965), Structures of continuous functions V. On homomorphisms of structures of continuous functions with 0-dimensional compact domains. Proc. Kon. Nederl. Acad. Wetensch. A 68 92–94. MR 38#5863zbMATHGoogle Scholar
  219. Mysior, A. (1977), Some remarks on embedding properties of completely Hausdorff and totally disconnected spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 25 555–558. MR 57#1412Google Scholar
  220. Mysior, A. (1978), The category of all zero-dimensional realcompact spaces is not simple. Gen. Topol. Appl. 8 259–264. MR 57#7535Google Scholar
  221. Nakagawa, R. (1989), Categorical topology. In: Topics in General Topology (eds. K. Morita and J. Nagata), North Holland, Amsterdam, 563–623. MR 91c: 54015Google Scholar
  222. Nalli, P. (1911), Sopra una definicione di domino piano limitado da una curva continua, senza punti multipli. Rendiconti de Circolo Matematico di Palermo 32, 391–401.Google Scholar
  223. Nel, L.D. (1972), Lattices of lower semi-continuous functions and associated topological spaces. Pacific J. Math. 40 667–673. MR 46#8165Google Scholar
  224. Nel, L.D. (1977), Cartesian closed coreflective hulls. Quaestiones Math. 2 269–283. MR 58#843Google Scholar
  225. Nel, L.D. and R. G. Wilson (1972), Epireflections in the category of T o -spaces. Fund. Math. 75 69–74. MR 46#6285Google Scholar
  226. Nyikos, P. (1971), Not every zerodimensional realcompact space is N-compact. Bull. Amer. Math. Soc. 77 392–396. MR 43#8048Google Scholar
  227. Nyikos, P. (1973), Prabir Roy’s space D is not N-compact. Gen. Topol. Appl. 3 197–210. MR 48#3007Google Scholar
  228. Pierce, R.S. (1961), Rings of integer-valued continuous functions. Trans. Amer. Math. Soc. 100 371–394. MR 24#Al289Google Scholar
  229. Porter, J. R. and R. G. Woods (1988), Extensions and Absolutes of Hausdorff Spaces. Springer-Verlag, New York. MR 89B: 54003CrossRefGoogle Scholar
  230. Preuss, G. (1988), Theory of Topological Structures. An Approach to Categorical Topology. Reidel, Dordrecht. MR 89m: 54014Google Scholar
  231. Ramer, A. (1965), Some problems on universal spaces. Bull. Acad. Polon. Sci. Ser. Math. Astr. Phys. 13 291–294. MR 31#6205Google Scholar
  232. Remmert, R. (1993), Die Algebraisierung der Funktionentheorie. Mitteilungen d. Deutschen Mathem.-V. 4, 13–18.Google Scholar
  233. Riesz, F. (1907), Die Genesis des Raumbegriffs. Math. u. Naturwiss. Berichte aus Ungarn 24, 309–353.Google Scholar
  234. Riesz, F. (1909), Stetigkeitsbegriff und abstrakte Mengenlehre. Atti del IV Congresso Internazionale dei Matematici, Roma 1908, Vol. II, 18–24.Google Scholar
  235. Ringel, C.M. (1970), Diagonalisierungspaare I. Math. Z. 117, 249–266. MR 42#7745 Ringleb, P. (1969), Untersuchungen über die Kategorie der geordneten Mengen. Thesis, Free Univ. Berlin.Google Scholar
  236. Robinson, A. (1968), Some thoughts on the history of mathematics. In: Logic and Foundations of Mathematics (eds. D. van Dalen et al.), Wolters-Noordhoff Pub., Groningen, 188–193.Google Scholar
  237. Rosickÿ, J. and W. Tholen (1988), Orthogonal and prereflective subcategories. Cahiers Topol. Geom. Diff. Cat. 29, 203–215. MR 90b: 18003Google Scholar
  238. Roy, P. (1962), Failure of equivalence of dimension concepts for metric spaces. Bull. Amer. Math. Soc. 68, 609–613. MR 25#5495Google Scholar
  239. Roy, P. (1968), Nonequality of dimensions for metric spaces. Trans. Amer. Math. Soc. 134, 117–132. MR 37#3544Google Scholar
  240. Rudin, W. (1973), Functional Analysis. McGraw Hill, New York. MR 51#1315Google Scholar
  241. Saks, S. (1921), Sur l’equivalence de deux théorèmes de la théorie des ensembles. Fund. Math. 2, 1–3.Google Scholar
  242. Salbany, S. (1974), On compact* spaces and compactifications. Proc. Amer. Math. Soc. 45 274–280. MR 50#8443Google Scholar
  243. Samuel, P. (1948), On universal mappings and free topological groups. Bull. Amer. Math. Soc. 54, 591–598. MR 9–605Google Scholar
  244. Samuel, P. (1948a), Ultrafilters and compactifications of uniform spaces. Trans. Amer. Math. Soc. 64, 100–132. MR 10–54Google Scholar
  245. Schwarz F. (1983), Funktionenräume und exponentiale Objekte in punktetrennend initialen Kategorien. Thesis, Univ. Bremen.zbMATHGoogle Scholar
  246. Semadeni, Z. (1963), Projectivity, infectivity, and duality. Rozprawy Mat. 35, 1–47. MR 27#4776Google Scholar
  247. Semadeni, Z. (1971), Banach Spaces of Continuous Functions. Polish Sci. Publ. Warszawa. MR 45#5730Google Scholar
  248. Shirota, T. (1951), On spaces with complete structure. Proc. Japan Acad. 27 513–516. MR 14–68Google Scholar
  249. Shirota, T. (1952), A class of topological spaces. Osaka Math. J. 4, 23–40. MR 14–395Google Scholar
  250. Shirota, T. (1952a), A generalization of a theorem of Kaplansky. Osaka Math. J. 4, 121–132. MR 14–669Google Scholar
  251. Sierpinski, W. (1921), Sur les ensembles connexes et non connexes. Fund. Math. 2, 81–95.Google Scholar
  252. Skula, L. (1969), On a reflective subcategory of the category of topological spaces. Trans. Amer. Math. Soc. 142 37–41. MR 40#1969Google Scholar
  253. van der Slot, J. (1966), Universal topological properties. ZW 1966–011 Math. Centrum, Amsterdam. MR 39#3457Google Scholar
  254. van der Slot, J. (1968), Some properties related to compactness. Thesis, Math. Centrum, Amsterdam. MR 40#871Google Scholar
  255. van der Slot, J. (1969), An elementary proof of the Hewitt-Shirota theorem. Compos. Math. 21 182–184. MR 40#1970Google Scholar
  256. Smirnov, Yu.M. (1952), On proximity spaces. Mat. Sb. (N.S.) 31 (73), 543–574 (Russ., Engl. Transi.: Amer. Math. Soc. Transi. Ser. 2, 38 (1964), 5–35. MR 14–1107Google Scholar
  257. Sonner, J. (1963), Universal and special problems. Math. Z. 82 200–211. MR 28#123Google Scholar
  258. Sonner, J. (1964), Universal solutions and adjoint homomorphisms. Math. Z. 86, 14–20. MR 29#5886Google Scholar
  259. Steenrod, N.E. (1967), A convenient category of topological spaces. Michigan Math. J. 14 133–152. MR 35#970MathSciNetzbMATHCrossRefGoogle Scholar
  260. Steiner, A.K. and E.F. Steiner (1973), On semi-uniformities. Fund. Math. 83 47–58. MR 48#9670Google Scholar
  261. Stone, A.H. (1948), Paracompactness and product spaces. Bull. Amer. Math. Soc. 54 977–982. MR 10–204Google Scholar
  262. Stone, M.H. (1937), Applications of the theory of Boolean rings to general topology. Trans. Amer. Math. Soc. 41, 375–481.Google Scholar
  263. Stone, M.H. (1948), On the compactification of topological spaces. Ann. Soc. Polon. Math. 21, 153–160. MR 10–137Google Scholar
  264. Strecker, G. E. (1976), Perfect sources. Springer Lecture Notes Math. 540 605–624. MR 56#9479Google Scholar
  265. Tholen, W. (1987), Reflective subcategories. Topol. Appl. 27, 201–212. MR 89b: 18006MathSciNetzbMATHCrossRefGoogle Scholar
  266. Thomas, J.P. (1968), Associated regular and T 3 -spaces. Canad. J. Math. 20 1087–1092. MR 37#6901Google Scholar
  267. Thron, W.J. (1966), Topological Structures. Holt, Rinehart and Winston, New York. MR 34#778Google Scholar
  268. Tietze, H. (1923), Beiträge zur allgemeinen Topologie I. Math. Annalen 88, 290–312.Google Scholar
  269. Trnkovâ, V. (1962), On the theory of categories. (Russian) Comment. Math. Univ. Carolinae 3 9–35. MR 26#3637Google Scholar
  270. Trnkovâ, V., J. Adâmek and J. Rosickÿ (1990), Topological reflections revisited. Proc. Amer. Math. Soc. 108, 605–612. MR 90e: 18004Google Scholar
  271. Tukey, J.W. (1940), Convergence and Uniformity in Topology. Princeton Univ. Press. MR 2–67Google Scholar
  272. Tychonoff, A. (1930), Über die topologische Erweiterung von Räumen. Math. Ann. 102, 544–561.Google Scholar
  273. Tychonoff, A. (1935), Über einen Funktionenraum. Math. Annalen 111, 762–766.MathSciNetCrossRefGoogle Scholar
  274. Tychonoff, A. (1935a), Ein Fixpunktsatz. Math. Annalen 111, 767–776.Google Scholar
  275. Urysohn, P. (1925), Über die Mächtigkeit der zusammenhängenden Mengen. Math. Annalen 94, 262–295.Google Scholar
  276. Urysohn, P. (1926), Sur les classes L de M. Fréchet. Enseignement Math. 25, 77–83.Google Scholar
  277. Vajner, V. (1994), Approaches to reflective hulls of subcategories. Thesis, Univ. Cape Town.Google Scholar
  278. Vedenissoff, N. (1939), Remarks on the dimension of topological spaces. Moscov. Gos. Univ. U. Zap. 30 131–140. MR 2–69Google Scholar
  279. Venkataraman, M. (1962), Directed sets in topology. Math. Student 30 99–100. MR 27#5219MathSciNetzbMATHGoogle Scholar
  280. Vietoris, L. (1921), Stetige Mengen. Monatsh. f. Mathem. u. Physik 31, 173–204.Google Scholar
  281. Vogt, R.M. (1971), Convenient categories of topological spaces for homotopy theory. Archiv Math. 22, 545–555. MR 45#9323Google Scholar
  282. van der Waerden, B.L. (1935), Nachruf auf Emmy Noether. Math. Annalen 111, 469–474.Google Scholar
  283. Walker R.C. (1974), The Stone-tech Compactification. Springer, Berlin. MR 52#1595Google Scholar
  284. Wallman, H. (1938), Lattices and topological spaces. Ann. Math. 39, 112–126.Google Scholar
  285. Weil, A. (1937), Sur les espaces à structure uniforme et sur la topologie générale. Actualités Scientifiques et Industrielles 551, Herrmann, Paris.Google Scholar
  286. Weyl, H. (1935), Emmy Noether. Scripta Mathem. 3, 200–220.MathSciNetGoogle Scholar
  287. Whitehead, J.H.C. (1948), A note on a theorem due to Borsuk. Bull. Amer. Math. Soc. 54, 1125–1132. MR 10–617MathSciNetzbMATHCrossRefGoogle Scholar
  288. Whitehead, J.H.C. (1949), Combinatorial homotopy. Bull. Amer. Math. Soc. 55 213–245 and 453–496. MR 11–48Google Scholar
  289. Willard, S. (1968), General Topology. Addison-Wesley, Reading. MR 41#9173Google Scholar
  290. Whyburn, G.T. (1965), Directed families of sets and closedness of functions. Proc. Nat. Acad. Sci. USA 54, 688–692. MR 32#435Google Scholar
  291. Wyler, O. (1971), Top categories and categorical topology. Gen. Topol. Appl. 1 17–28. MR 43#8036MathSciNetzbMATHCrossRefGoogle Scholar
  292. Wyler, O. (1992), Bibliography for Categorical Topology. Carnegie Mellon Univ., 51 pages.Google Scholar
  293. Young, G.S. (1946), The introduction of local connectivity by change of topology. Amer. J. Math. 68, 479–494. MR 8–49MathSciNetzbMATHCrossRefGoogle Scholar
  294. Zenor, P. (1970), Extending completely regular spaces with inverse limits. Glasnik Mat. Ser. III 5, 157–162. MR 43#1128MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  1. 1.Fachbereich Mathematik/InformatikUniversität BremenBremenGermany
  2. 2.Dept. of MathematicsKansas State UniversityManhattanUSA

Personalised recommendations