Skip to main content

Categorical Topology — Its Origins, as Exemplified by the Unfolding of the Theory of Topological Reflections and Coreflections before 1971

  • Chapter

Part of the History of Topology book series (HIPO,volume 1)

Abstract

“Man is a being, intelligent and gifted with the faculty of comprehending the abstract. Thanks to this faculty, man has conceived the ideal, and realized poesy; he has conceived the infinite, and created mathematics. Such is the immense distinction which separates the human race so widely from the animals, which makes him a being apart and absolutely new upon the globe. Comprehending the ideal and the infinite, creating poetry and algebra, such is man! To find and understand this formula

$${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$$

, or the algebraic idea of negative quantities, this is the peculiar characteristic of man.”

Keywords

  • Topological Space
  • Compact Space
  • Hausdorff Space
  • Regular Space
  • Categorical Topology

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-017-0468-7_15
  • Chapter length: 87 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-94-017-0468-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adâmek, J., H. Herrlich and G.E. Strecker (1990), Abstract and Concrete Categories. The Joy of Cats. Wiley, New York. MR 91h: 18001

    Google Scholar 

  2. Adâmek, J. and J. Rosickÿ (1988), Intersections of reflective subcategories. Proc. Amer. Math. Soc. 103, 710–712. MR 89e: 18003

    Google Scholar 

  3. Alexandroff P. (1935), Sur les espaces discrets. Comptes Rendus Acad. Sci. Paris 200 1649–1651.

    Google Scholar 

  4. Alexandroff P. (1937), Diskrete Räume. Mat. Sbornik 2 501–519.

    Google Scholar 

  5. Alexandroff P. (1939), Bikompakte Erweiterungen topologischer Räume. [Russ., German Summary] Mat. Sbornik (N.S.) 5 (47) 403–423. MR 1–318.

    Google Scholar 

  6. Alexandroff P. (1947), On the concept of space in topology. Uspehi Matem. Nauk (N.S.) 2 no. 1 (17), 5–57. MR 10–389

    Google Scholar 

  7. Alexandroff, P. and H. Hopf (1935), Topologie I, Springer Verlag, Berlin.

    Google Scholar 

  8. Alexandroff, P. and P. Urysohn (1923), Une condition nécessaire et suffisante pour qu’une espace (L) soit une classe (D). Compt. Rend. Acad. Sci. Paris 177, 1274–1276.

    Google Scholar 

  9. Alexandroff, P. and P. Urysohn (1929), Mémoire sur les espaces topologiques compacts. Verh. Nederl. Akad. Wetensch. Afd. Naturk. Sect. I, 14, 1–96.

    Google Scholar 

  10. Arens, R. and J. Dugundji (1951), Topologies for function spaces. Pacific J. Math. 1, 5–31. MR 13–264

    Google Scholar 

  11. Arhangel’skii, A.V. (1963), Bicompact sets and the topology of spaces. Dokl. Akad. Nauk, SSSR, 150 9–12 = Soviet Math. 4 561–564. MR 27#720

    Google Scholar 

  12. Arhangel’skii, A.V., R. Isler and G. Tironi (1986), On pseudo—radial spaces. Comment. Math. Univ. Carolinae 27, 137–154. MR 88b: 54005

    Google Scholar 

  13. Artin, M., A. Grothendieck and J. Verdier (1963/64), Séminaire de Géométrie Algébrique du Bois—Marie (SGA4) [rev. ed.: Théorie des Topos et Cohomologie Etale des Schémas. Springer Lecture Notes Math. 269 (1972). MR 50#7130].

    Google Scholar 

  14. Aull, C.E. (1985), Rings of Continuous functions. Lect. Notes Pure Appl. Math. 95, Marcel Dekker, New York. MR 86g: 54001

    Google Scholar 

  15. Baer, R. and F. Levi (1932), Stetige Funktionen in topologischen Räumen. Math. Z. 34, 110–130.

    MathSciNet  CrossRef  Google Scholar 

  16. Bageley, R.W. and J.S. Yang (1966), On k—spaces and function spaces. Proc. Amer. Math. Soc. 17 703–705. MR 33#693

    Google Scholar 

  17. Banaschewski, B. (1953), Untersuchungen über Filterräume. Thesis

    Google Scholar 

  18. Univ. Hamburg. (1955), Über nulldimensionale Räume. Math. Nachrichten 13 129–140. MR 19–157

    Google Scholar 

  19. Univ. Hamburg. (1964), Extensions of topological spaces. Canad. Math. Bull. 7 1–22. MR 28#4501

    Google Scholar 

  20. Banaschewski, B. and J. M. Maranda (1961), Proximity functions. Math. Nachr. 23 1–37. MR 29#2768

    MathSciNet  MATH  CrossRef  Google Scholar 

  21. Banaschewski, B. and C. J. Mulvey (1980), Stone—tech compactification of locales I. Houston J. Math. 6, 301–312. MR 82b: 06010

    Google Scholar 

  22. Banaschewski, B. and C. J. Mulvey (1984), Stone—tech compactification of locales II. J. Pure Appl. Algebra 33, 107–122. MR 86d: 06009

    Google Scholar 

  23. Baron, S. (1968), The coreflective subcategory of sequential spaces. Canad. Math. Bull. 11, 603–604. MR 38#5158

    Google Scholar 

  24. Baron, S. (1968a), Note on epi in To. Canad. Math. Bull. 11, 503–504. MR 38#3315

    Google Scholar 

  25. Baron, S. (1969), Reflectors as compositions of epireflectors. Trans. Amer. Math. Soc. 136 499–508. MR 38#4535

    MathSciNet  MATH  CrossRef  Google Scholar 

  26. Behrend, F. A. (1957), Uniformizability and compactifiability of topological spaces. Math. Zeitschr. 67 203–210. MR 19–298

    MathSciNet  MATH  CrossRef  Google Scholar 

  27. Bentley, H. L. and H. Herrlich (1979), Completeness for nearness spaces. Amsterdam Mathem. Centre Tracts 115, 29–40. MR 81c: 54046

    MathSciNet  Google Scholar 

  28. Bentley, H. L., H. Herrlich and M: Husek (1994), History of uniform structures. This handbook.

    Google Scholar 

  29. Birkhoff, G. (1935), A new definition of limit. Bull. Amer. Math. Soc. 41, 636.

    Google Scholar 

  30. Birkhoff, G. (1937), Moore-Smith convergence in general topology. Ann. Math. 38, 39–56.

    Google Scholar 

  31. Blanksma, T. (1968), Lattice characterizations of topologies and compactifications. Thesis, Univ. Utrecht.

    Google Scholar 

  32. Blefko, E. (1965), On E-compact spaces. Thesis, Penn. State University.

    Google Scholar 

  33. Blefko, E. (1972), Some classes of E-compactness. Austr. Math. J. 13 492–500. MR 47#2552

    Google Scholar 

  34. Blefko, E. and S. Mrówka (1966), On the extensions of continuous functions from dense subspaces. Proc. Amer. Math. Soc. 17 1396–1400. MR 34#1989

    Google Scholar 

  35. Borel, E. (1903), Sur l’approximation des nombres par des nombres rationells. Comptes Rendue Acad. Paris 136, 1054–1055.

    Google Scholar 

  36. Bourbaki, N. (1939), Eléments de Mathématique I,Théorie des ensembles, Fascicule de résultats. Actualités Scientifiques et Industrielles 846 Herrmann

    Google Scholar 

  37. Paris. MR 3–55 (1940), Topologie générale. Ch. I Structures topologiques, Ch. II Structures uniformes. Actualités Scientifiques et Industrielles 858 Herrmann

    Google Scholar 

  38. Paris. MR 3–55 (1948), Algèbre. Ch. 3 Algèbre multilinéaire. Actualités Scientifiques et Industrielles 1044, Herrmann, Paris. MR 10–231

    Google Scholar 

  39. Paris. MR 3–55 (1957), Théorie des ensembles,Ch. 4 Structures. Actualités Scientifiques et Industrielles 1258 Herrmann, Paris. MR 20#3804

    Google Scholar 

  40. Paris. MR 3–55 (1960), Eléments d’histoire des mathématiques. Hermann, Paris. MR 22#4620

    Google Scholar 

  41. Paris. MR 3–55 (1961), Topologie générale. Ch. I Structures topologiques, Ch. II Structures uniformes. Actualités Scientifiques et Industrielles, 3 éd., 1142 Herrmann, Paris. MR 25#4480

    Google Scholar 

  42. Breger, H. (1971), Die Kategorie der kompakt-erzeugten Räume als in TOP coreflektive Kategorie mit Exponentialgesetz. Ms Thesis, Univ. Heidelberg.

    Google Scholar 

  43. Brown, R. (1963), Ten topologies for X x Y. Quart. J. Math., Oxford (2) 14 303–319. MR 28#2516

    Google Scholar 

  44. Brown, R. (1964), Function spaces and product topologies. Quart. J. Math. Oxford 15 238–250. MR 29#2779

    Google Scholar 

  45. Brucker, P. (1968), Ketten-kompakte Räume. Dissertation, Free Univ. Berlin.

    Google Scholar 

  46. Bruns, G. (1962), Darstellungen und Erweiterungen geordneter Mengen I, IL J. Reine Angew. Math. 209 167–200 and 210 1–23. MR 26#1270ab

    Google Scholar 

  47. Biichi, J.R. (1952), Representations of complete lattices by sets. Portugaliae Math. 11, 151–167. MR 14–940

    Google Scholar 

  48. Cameron, D.E. (1985), The birth of the Stone-tech compactification. In: Rings of Continuous Functions (ed. C.E. Aull), Marcel Dekker, New York, 67–78. MR 86g: 01035

    Google Scholar 

  49. Cartan, H. (1937), Théorie des filtres. Compt. Rendue Acad. Paris 205, 595–598.

    Google Scholar 

  50. Cartan, H. (1937a), Filtres et ultrafiltes. Compt. Rendue Acad. Paris 205, 777–779.

    Google Scholar 

  51. Tech, E. (1937), On bicompactspaces. Ann. Math. 38, 823–844.

    CrossRef  Google Scholar 

  52. Tech, E. (1966), Topological Spaces. (Revised ed. by Z. Frolik and M. Katétov) J. Wiley, London. MR 35#2254

    Google Scholar 

  53. Chandler, R.E. (1972), An alternative construction of ßX and vX. Proc. Amer. Math. Soc. 32 315–318. MR 45#1120

    MathSciNet  MATH  Google Scholar 

  54. Chew, K.P. (1970), A characterization of lei-compact spaces. Proc. Amer. Math. Soc. 26, 679–682. MR 42#2436

    Google Scholar 

  55. Chew, K.P. (1972), N-compact spaces as limits of inverse systems of discrete spaces. J. Austral. Math. Soc. 14 467–469. MR 47#2553

    Google Scholar 

  56. Tincura, J. (1991), Cartesian closed coreflective subcategories of the category of topological spaces. Topol. Appl. 41, 205–212. MR 92m: 18013

    Google Scholar 

  57. Cohen, D.E. (1954), Spaces with weak topology. Quart. J. Math. 5 77–80. MR 16–62

    Google Scholar 

  58. Comfort, W.W. (1968), A theorem of Stone-Cech type, and a theorem of Tychonoff type, without the axiom of choice; and their realcompact analogues. Fund. Math. 63, 97–110. MR 38#5174

    Google Scholar 

  59. Corson, H.H. and J.R. Isbell (1960), Euclidean covers of topological spaces. Quart. J. Math. Oxford (2) 11 34–42. MR 23#A2194

    Google Scholar 

  60. Day, B.J. and G.M. Kelly (1970), On topological quotients preserved by pullbacks and products. Proc. Cambridge Phil. Soc. 67 553–558. MR 40#8024

    MathSciNet  MATH  CrossRef  Google Scholar 

  61. Dieudonné, J. (1944), Une généralisation des espaces compacts. J. Math. Pure Appl. 23 65–76. MR 7–134

    MATH  Google Scholar 

  62. Dieudonné, J. (1970), The work of Nicholas Bourbaki. Amer. Math. Monthly 77 134–145. MR 40#5402

    Google Scholar 

  63. Dolcher, M. (1960), Topologie e strutture di convergenza. Annali della Scuola Normale Superiore di Pisa, Ser. III 14 63–92. MR 22#5026

    Google Scholar 

  64. Dowker, C.H. (1952), Topology of metric complexes. Amer. J. Math. 74 555–577. MR 13–965

    Google Scholar 

  65. Dudley, R.M. (1964), On sequential convergence. Trans. Amer. Math. Soc. 112 483–507. MR 30#5266

    Google Scholar 

  66. Eda, K., T. Kiyosawa and H. Ohta (1989), N-compactness and its applications. In: Topics in General Toplogy (eds. K. Morita and J. Nagata), North Holland, Amsterdam, 459–521. MR 91m: 54018

    Google Scholar 

  67. Ehresmann, C. (1957), Gattungen von lokalen Strukturen. Jahresber. Deutsch. Math. Verein. 60 49–77. MR 20#2392

    MathSciNet  MATH  Google Scholar 

  68. Ehresmann, C. (1967), Sur l’existence de structures libres et de foncteurs adjoints. Cahiers Topol. Géom. Diff. 9 33–180. MR 38#5873

    Google Scholar 

  69. Ehresmann, C. (1969), Construction de structures libres. Springer Lecture Notes Math. 92 74–104. MR 39#6944

    Google Scholar 

  70. Eilenberg S. and S. Mac Lane (1945), General theory of natural equivalences. Trans. Amer. Math. Soc. 58 231–295. MR 7–109

    Google Scholar 

  71. Engelking, R. (1989), General Topology. Heldermann Verlag, Berlin. MR 91c: 54001

    Google Scholar 

  72. Engelking, R. and S. Mrówka (1958), On E-compact spaces. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astr. Phys. 6 429–436. MR 20#3522

    Google Scholar 

  73. Felscher, W. (1965), Adjungierte Funktoren and primitive Klassen. Sitzungsber. Heidelberger Akad. Wiss. 4 447–509. MR 33#2701

    Google Scholar 

  74. Flachsmeyer, J. (1961), Zur Spektralentwicklung topologischer Räume. Math. Annalen 144 253–274. MR 26#735

    MathSciNet  MATH  CrossRef  Google Scholar 

  75. Fox, R.H. (1945), On topologies for function spaces. Bull. Amer. Math. Soc. 51 429–432. MR 6–278

    MathSciNet  MATH  CrossRef  Google Scholar 

  76. Franklin, S.P. (1965), Spaces in which sequences suffice. Fund. Math. 57 107–115. MR 31#5184

    MathSciNet  MATH  Google Scholar 

  77. Franklin, S.P. (1967), Spaces in which sequences suffice IL Fund. Math. 61 51–56. MR 36#5882

    MathSciNet  MATH  Google Scholar 

  78. Franklin, S.P. (1969), Natural Covers. Composito Math. 21 253–261. MR 40#3491

    Google Scholar 

  79. Franklin, S.P. (1971), On epi-reflective hulls. Gen. Topol. Appl. 1 29–31. MR 44#3287

    Google Scholar 

  80. Franklin, S.P. V. Kannan, and T. Soundararajan (1981), Maximality of Stone-Cech topologies. Unpublished manuscript.

    Google Scholar 

  81. Fréchet, M. (1906), Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo 22, 1–74.

    Google Scholar 

  82. Fréchet, M. (1918), Sur la notion de voisinage dans les ensembles abstraits. Bull. Sci. Math. 42, 138–156.

    Google Scholar 

  83. Freyd, P. (1958), The theory of limits. Undergraduate Honors Thesis, Brown Univ.

    Google Scholar 

  84. Freyd, P. (1960), Functor Theory. Thesis, Princeton Univ.

    Google Scholar 

  85. Freyd, P. (1964), Abelian categories. Harper and Row, New York. MR 29#3517

    Google Scholar 

  86. Freyd, P.J. and G.M. Kelly (1972), Categories of continuous functors I. J. Pure Appl. Algebra 2 169–191. MR 48#369

    Google Scholar 

  87. Frolík, Z. (1972), Prime filters with CIP. Comment. Math. Univ. Carolinae 13 553–575. MR 47#4197

    Google Scholar 

  88. Frolík, Z, and S. Mrówka (1971), Perfect images of R- and N-compact spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 19 369–371. MR 46#6288

    Google Scholar 

  89. Gale, D. (1950), Compact sets of functions and function rings. Proc. Amer. Math. Soc. 1 303–308. MR 12–119

    Google Scholar 

  90. Georgescu, G. and B. Lungulescu (1969), Sur les propriétés topologiques des structures ordonn’ees. Revue Roumaine Math. Pure Appl. 14 1453–1456. MR 41#1614

    Google Scholar 

  91. Gelfand, I. and A. Kolmogoroff (1939), On rings of continuous functions on topological spaces. Doklady Akad. Nauk SSR 22, 11–15.

    Google Scholar 

  92. Gelfand, I. and G. Shilov (1941), Über verschiedene Methoden der Einführung der Topologie in die Menge der maximalen Ideale eines normierten Ringes. Rec. Mat. (Mat. Sbornik) N.S. 9 25–38. MR 3–52

    Google Scholar 

  93. Gillman, L. (1985), Rings of continuous functions as rings: a survey. In: Aull, Rings of Continuous Functions, 143–147. MR 86g: 54001

    Google Scholar 

  94. Gillman, L., M. Henriksen and M. Jerison (1954), On a theorem of Gelfand and Kolmogoroff concerning maximal ideals in rings of continuous functions. Proc. Amer. Math. Soc. 5 447–455. MR 16–607

    Google Scholar 

  95. Gillman, L. and M. Jerison (1960), Rings of Continuous Functions. van Nostrand, Princeton, NJ. MR 22#6994

    Google Scholar 

  96. Gleason, A.M. (1958), Projective topological spaces. Illinois J. Math. 2 482–489. MR 22#12509

    MathSciNet  MATH  Google Scholar 

  97. Gleason, A.M. (1963), Universal locally connected refinements. Illinois J. Math. 7, 521–531. MR 29#1612

    MathSciNet  MATH  Google Scholar 

  98. Gleason, A.M. and R.S. Palais (1957), On a class of transformation groups. Amer. J. Math. 79 631–648. MR 19–663

    Google Scholar 

  99. Goodstein, R.L. (1968), Existence in mathematics. In: Logic and Foundations of Mathematics (eds. D. van Dalen, J.G. Dijkman, S.C. Kleene, and A.S. Troelstra), Wolters—Nordhoff Pu.Co., Groningen, 70–82.

    Google Scholar 

  100. de Groot, J. (1959), Groups represented by homeomorphism groups I. Math. Annalen 138 80–102. MR 22#9959

    Google Scholar 

  101. Grothendieck, A. (1957), Sur quelques points d’algèbre homologique. Tohoku Math. J. (2) 9, 119–221. MR 21#1328

    Google Scholar 

  102. Hager, A. W. (1973), Compactification and completion as absolute closure. Proc. Amer. Math. Soc. 40 635–638. MR 48#9660

    MathSciNet  MATH  CrossRef  Google Scholar 

  103. Hager, A. W. (1975)Perfect maps and epi—reflective hulls. Canad. J. Math. 27 11–24. MR 51#1751

    Google Scholar 

  104. Hahn, H. (1914), Über die allgemeinste ebene Punktmenge, die stetiges Bild einer Strecke ist. Jahresber. Deutsch. Math. Ver. 23, 318–322.

    Google Scholar 

  105. Hahn, H. (1914a), Mengentheoretische Charakterisierung der stetigen Kurve. Sitzungsber. Akad. Wiss. Wien, Abt. IIa 123, 2433–2489.

    Google Scholar 

  106. Hahn, H. (1921), Über die Komponenten offener Mengen. Fund. Math. 2, 189–192.

    MATH  Google Scholar 

  107. Hajek, D. W. and A. Mysior (1979), On non—simplicity of topological categories. Springer Lecture Notes Math. 719, 84–93. MR 81j: 18009

    Google Scholar 

  108. Hart, H. (1992), The Cech—Stone compactification of the real line. In: Recent Progress in General Topology (eds. M. Husek and J. van Mill), North Holland, Amsterdam, 317–352.

    Google Scholar 

  109. Hausdorff, F. (1914), Grundzüge der Mengenlehre. Veit, Leipzig.

    MATH  Google Scholar 

  110. Gestufte Räume. Fund. Math. 25 486–502.

    Google Scholar 

  111. Henriksen, M. and J.R. Isbell (1958), Some properties of compactifications. Duke Math. J. 25 83–105. MR 20#2689

    Google Scholar 

  112. Herrlich, H. (1962), Ordnungsfähigkeit topologischer Räume. Thesis, Free Univ. Berlin. MR 27#4196

    Google Scholar 

  113. Herrlich, H. (1965), E—kompakte Räume. Habil. Schrift, Free Univ. Berlin.

    Google Scholar 

  114. Herrlich, H. (1965a), Ordnungsfähigkeit total—diskontinuierlicher Räume. Math. Annalen 159 77–80. MR 32#426

    Google Scholar 

  115. Herrlich, H. (1965b), Wann sind alle stetigen Abbildungen in Y konstant? Math. Z. 90 152–154. MR 32#1664

    Google Scholar 

  116. Herrlich, H. (1967), Quotienten geordneter Räume und Folgenkonvergenz. Fund. Math. 61 79–81. MR 364t4528

    Google Scholar 

  117. Herrlich, H. (1967a), Fortsetzbarkeit stetiger Abbildungen und Kompaktheitsgrad topologischer Räume. Math. Z. 96 64–72. MR 34#8370

    Google Scholar 

  118. Herrlich, H. (1967b), E —kompakte Räume. Math. Z. 96 228–255. MR 34#5051

    Google Scholar 

  119. Herrlich, H. (1968), Topologische Reflexionen und Coreflexionen,Springer Lecture Notes Math. 78. MR 41#988

    Google Scholar 

  120. Herrlich, H. (1969), On the concept of reflections in general topology. In: Contricutions to Extension Theory of Topological Structures (eds. J. Flachsmeyer, H. Poppe and F. Terpe), Deutscher Verlag Wiss., Berlin, 105–116. MR 44#2210

    Google Scholar 

  121. Herrlich, H. (1969a), Limit—operators and topological coreflections. Trans. Amer. Math. Soc. 146, 203–209. MR 40#5693

    Google Scholar 

  122. Herrlich, H. (1969b), Topological coreflections. In: Topology and its Applications (ed. D.R. Kurepa ), Beograd, 187–188.

    Google Scholar 

  123. Herrlich, H. (1971), Categorical topology. Gen. Topol. Appl. 1 1–15. MR 44#974

    Google Scholar 

  124. Herrlich, H. (1972), A generalization of perfect maps. In: Gen. Topol. Rel. Mod. Anal. And Aig III. (ed. J. Novak), Academia, Prague, 187–191. MR 50#14634

    Google Scholar 

  125. Herrlich, H. (1974), Cartesian closed topological categories. Math. Colloq. Univ. Cape Town 9 1–16. MR 57#408

    Google Scholar 

  126. Herrlich, H. (1974a), Topological functors. Gen. Topol. Appl. 4 125–142. MR 49#7970

    Google Scholar 

  127. Herrlich, H. (1974b), A concept of nearness. Gen. Topol. Appl. 4, 191–212. MR 50#3193

    Google Scholar 

  128. Herrlich, H. (1983), Categorical topology 1971–1981. In: Gen. Topol. Rel. Mod. Anal. And Algebra V (ed. J. Novak), Heldermann Verlag, Berlin, 297–383. MR 84d: 54016

    Google Scholar 

  129. Herrlich, H. (1984), Universal topology. In: Categorical Topology (eds. H.L. Bentley, H. Herrlich, M. Rajagopalan, and H. Wolff), Heldermann Verlag, Berlin, 223–281. MR 86g: 18004

    Google Scholar 

  130. Herrlich, H. (1986), Einführung in die Topologie. Heldermann Verlag, Berlin. MR 87k: 54001

    Google Scholar 

  131. Herrlich, H. (1993), Compact To—spaces and To—compactifications. Appl. Cat. Structures 1, 111–132.

    Google Scholar 

  132. Herrlich, H. (1995), Compactness and the axiom of choice. Appl. Cat. Structures 3, 1–14.

    Google Scholar 

  133. Herrlich, H. and M. Husek (1990), Galois connections categorically. J. Pure Appl. Algebra 68, 165–180. MR 92f: 06008

    Google Scholar 

  134. Herrlich, H. and M. Husek (1992), Categorical topology. In: Recent Progress in General Topology (eds. M. Husek and J. van Mill), North Holland, Amsterdam, 369–403.

    Google Scholar 

  135. Herrlich, H. and M. Husek (1993), Some open categorical problems in Top. Appl. Cat. Struct. 1, 1–19. MR 94g: 54008

    Google Scholar 

  136. Herrlich, H., G. Salicrup and R. Vazquez (1979), Dispersed factorization structures. Canad. J. Math. 31, 1059–1071. MR 80j: 18006

    Google Scholar 

  137. Herrlich, H. and J. van der Slot (1967), Properties which are closely related to compactness. Indag. Math. 29 524–529. MR 36#5898

    Google Scholar 

  138. Herrlich, H. and G.E. Strecker (1971), Coreflective subcategories,Trans. Amer. Math. Soc. 157 205–226. MR 43#6281

    Google Scholar 

  139. Herrlich, H. and G.E. Strecker (1972), Coreflective subcategories in general topology. Fund. Math. 73 199–218. MR 46#1872

    Google Scholar 

  140. Hewitt, E. (1948), Rings of real—valued continuous funtions. Trans. Amer. Math. Soc. 64 54–99. MR 10–126

    Google Scholar 

  141. Hoffmann, R.E. (1975), Charakterisierung nüchterner Räume. Manuscr. Math. 15 185–191. MR 51#11405

    Google Scholar 

  142. Hoffmann, R.E. (1977), Irreducible filters and sober spaces. Manuscr. Math. 22 365–380. MR 57#4107

    Google Scholar 

  143. Hoffmann, R.E. (1979), On the sobrtfication of the remainder K — X. Pacific J. Math. 83, 145–156. MR 81b: 54024

    Google Scholar 

  144. Hoffmann, R.E. (1979a), Reflective hulls of finite topological spaces. Archiv Math. 33, 258–262. MR 82f: 54015

    Google Scholar 

  145. Hoffmann, R.E. (1984), Co—well—powered reflective subcategories. Proc. Amer. Math. Soc. 90, 45–46. MR 85f: 18002

    Google Scholar 

  146. Hong, S. S. (1973), On k—compactlike spaces and reflective subcategories. Gen. Topol. Appl. 3, 319–330. MR 48#12450

    Google Scholar 

  147. Hong, S. S. (1975), Extensive subcategories of the category of T o —spaces. Canad. J. Math. 27 311–318. MR 51#11406

    Google Scholar 

  148. Husek, M. (1964), S—categories. Comment. Math. Univ. Carolinae 5 37–46. MR 30#4234

    Google Scholar 

  149. Husek, M. (1966), Remarks on reflections. Comment. Math. Univ. Carolinae 7 249–259. MR 34#2659

    Google Scholar 

  150. Husek, M. (1967), One more remark on reflections. Comment. Math. Univ. Carolinae 8 129–137. MR 35#232

    Google Scholar 

  151. Husek, M. (1968), On a problem of H. Herrlich. Comment. Math. Univ. Carolinae 9 571–572. MR 39#6259

    Google Scholar 

  152. Husek, M. (1969), The class of k—compact spaces is simple. Math. Z. 110 123–126. MR 39#6260

    Google Scholar 

  153. Husek, M. (1971), Topological spaces with complete uniformities. Mathem. Centr. Amsterdam ZW 3/71.

    Google Scholar 

  154. Husek, M. (1972), Perfect images of E—compact spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 20 41–45. MR 46#6289

    Google Scholar 

  155. Husek, M. (1972a), Simple categories of topological spaces. In: Gen. Topol. Rel. Mod. Anal. and Alg III (ed. J. Novak), Academia, Prague, 203–207. MR 50#8416

    Google Scholar 

  156. Isbell, J.R. (1957), Some remarks concerning categories and subspaces. Canad. J. Math. 9 563–577. MR 20#923

    Google Scholar 

  157. Isbell, J.R. (1964), Subobjects, adequacy, completeness and categories of algebras. Rozprawy Math. 36 1–32. MR 29#1238

    Google Scholar 

  158. Isbell, J.R. (1964a), Natural sums and abelianizing. Pacific J. Math. 14 1265–1281. MR 31#3478

    Google Scholar 

  159. Isbell, J.R. (1964b), Uniform Spaces. Amer. Math. Soc., Providence, RI. MR 30#561

    Google Scholar 

  160. Isbell, J.R. (1966), Structure of categories,Bull. Amer. Math. Soc. 72 619–655. MR 34#5896

    Google Scholar 

  161. Isbell, J.R. (1987), A distinguishing example in k—spaces. Proc. Amer. Math. Soc. 100, 593–594. MR 88g: 54019

    Google Scholar 

  162. Ishii, T. (1989), The Tychonoff functor and related topics. In: Topics in General Topology (eds. K. Morita and J. Nagata), North Holland, Amsterdam, 203–243. MR 91e: 54028

    Google Scholar 

  163. Jacobson, N. (1945), A topology for the set of primitive ideals in an arbitrary ring. Proc. Nat. Acad. Sci. USA 31, 333–337. MR 7–110

    Google Scholar 

  164. Johnstone, P. T. (1981), Tychonoff’s theorem without the axiom of choice. Fund. Math. 113, 21–35. MR 84h: 03117

    Google Scholar 

  165. Kakutani, S. (1941), Concrete representations of abstract (M)—spaces. Ann. Math. 42 994–1024. MR 3–205

    Google Scholar 

  166. Kakutani, S. (1944), Free topological groups and infinite direct products of topological groups. Proc. Imp. Acad. Tokyo 20 595–598. MR 7–240

    Google Scholar 

  167. Kan, D.M. (1958), Adjoint functors. Trans. Amer. Math. Soc. 87 294–329. MR 24#A1301

    Google Scholar 

  168. Kannan, V. (1970), Coreflective subcategories in topology. Thesis, Madurai Univ.

    Google Scholar 

  169. Kannan, V. (1972), Reflexive cum coreflexive subcategories in topology. Math. Annalen 195, 168–174. MR 45#142

    Google Scholar 

  170. Kannan, V.(1976), On a problem of Herrlich. J. Madurai Univ. 6, 101–104. MR 58#2681

    Google Scholar 

  171. Kannan, V. and M. Rajagopalan (1978), Constructions and applications of rigid spaces I. Advances Math. 29, 89–130. MR 82e: 54045a

    Google Scholar 

  172. Kaplansky, I. (1947), Lattices of continuous functions. Bull. Amer. Math. Soc. 53, 617–623. MR 8–587

    Google Scholar 

  173. Katètov, M (1951), Measures in fully normal spaces. Fund. Math. 38, 73–84. MR 14–27

    MathSciNet  MATH  Google Scholar 

  174. Kelley, J.L. (1955), General Topology. Van Nostrand, New York. MR 16–1136

    MATH  Google Scholar 

  175. Kelly, G.M. (1969), Monomorphisms, epimorphisms, and pull—backs. J. Austral. Math. Soc. 9, 124–142. MR 39#1515

    Google Scholar 

  176. Kelly, G.M. (1987), On the ordered set of reflective subcategories. Bull. Austral. Math. Soc. 36, 137–152. MR 88K: 18006

    Google Scholar 

  177. Kennison, J.F.(1965), Reflective functors in general topology and elsewhere. Trans. Amer. Math. Soc. 118 303–315. MR 30#4812

    Google Scholar 

  178. Kennison, J.F. (1967), A note on reflection maps. Illinois J. Math. 11 404–409. MR 35#1649

    Google Scholar 

  179. Kennison, J.F. (1968), Full reflective subcategories and generalized covering spaces,Illinois J. Math. 12 353–365. MR 37#2832

    Google Scholar 

  180. Kisynski, J. (1960), Convergence du type,C. Colloqu. Math. 7 205–211. MR 23#A615

    Google Scholar 

  181. KoutnIk, V. (1985), Closure and topological sequential convergence. In: Convergence Structures 1984 (eds. J. Novak, W. Gähler, H. Herrlich, and M. Mikusinski), Akademie Verlag, Berlin, 199–204. MR 87e: 54005

    Google Scholar 

  182. Krein M. and S. Krein (1940), On an inner characteristic of the set of all continuous functions defined on a bicompact Hausdorff space. Doklady USSR 27 427–430. MR 2–222

    Google Scholar 

  183. Kuratowski, K. and W. Sierpuiski (1921), Le théorème de Borel—Lebesgue dans le théorie des ensembles abstraits. Fund. Math. 2, 172–178.

    Google Scholar 

  184. Kuratowski, K. and W. Sierpuiski (1921a), Sur les différences de deux ensembles fermés. Tohoku Math. J. 20, 23.

    Google Scholar 

  185. Lawvere, F.W. (1963), Functorial semantics and algebraic theories. Proc. Nat. Acad. Sci. USA 50 869–872. MR 28#2143

    Google Scholar 

  186. Leader, S. (1970), Regulated bases and completions of regulated spaces. Fund. Math. 67, 279–287.

    Google Scholar 

  187. Lowen—Colebunders, E. (1989), Function Classes of Cauchy Continuous Maps. Marcel Dekker, New York. MR 91c: 54002

    Google Scholar 

  188. Lubkin, S. (1960), Undergraduate Honors Thesis, Columbia Univ.

    Google Scholar 

  189. Lynn, I.L. (1962), Linearly orderable spaces. Proc. Amer. Math. Soc. 13 454–456. MR 25#1536

    Google Scholar 

  190. Mac Lane, S. (1948), Groups, categories and duality,Proc. Nat. Acad. Sci. USA 34 263–267. MR 10–9

    Google Scholar 

  191. Mac Lane, S. (1950), Duality for groups,Bull. Amer. Math. Soc. 56 485–516. MR 14–133

    Google Scholar 

  192. Mac Lane, S. (1989), The development of mathematical ideas by collision: the case of categories and topos theory. In: Categorical Topology (eds. J. Adamek and S. Mac Lane), World Scientific, Singapore, 1–9. MR 91e: 18001

    Google Scholar 

  193. Magill, K.D. and J.A. Glasenapp (1967), 0—dimensional compactifications and Boolean rings. J. Austral. Math. Soc. 8 755–765. MR 41#6740

    Google Scholar 

  194. Manheim, J.H. (1964), The Genesis of Point Set Topology. Pergamon Press, Oxford. MR 37#2561

    Google Scholar 

  195. Markoff, A.A. (1941), On free topological groups. Dokl. Akad. Nauk SSR 31 299–301. MR 3–36

    Google Scholar 

  196. Markoff, A.A. (1945), On free topological groups. Izv. Akad. Nauk SSR, Ser. Mat. 9 3–64. =Topology and Topological Algebra, Translation Ser. 1,8 (1962), 195–272. MR 7–7

    Google Scholar 

  197. Marny, T. (1979), On epireflective subcategories of topological categories. Gen. Topol. Appl. 10, 175–181. MR 80g: 18004

    Google Scholar 

  198. Mazurkievicz, S. (1920), Sur les Lignes de Jordan. Fund. Math. 1, 166–209.

    Google Scholar 

  199. Michael, E. (1968), Local compactness and cartesian products of quotient maps and k-spaces. Ann. Inst. Fourier Grenoble 18 281–286. MR 39#6256

    Google Scholar 

  200. Milgram, A. N. (1949), Multiplicative semigroups of continuous functions. Duke Math. J. 16, 377–383. MR 10–612

    Google Scholar 

  201. van Mill, J. (1984), An introduction to ßw. In: Handbook of Set-Theoretic Topology (eds. K. Kunen and J. E. Vaughan), North Holland, Amsterdam, 503–567. MR 86f: 54027

    Google Scholar 

  202. Mitchell, B. (1965), Theory of Categories. Academic Press, New York and London. MR 34#2647

    Google Scholar 

  203. Moore, G.H. (1982), Zermelo’s Axiom of Choice, Its Origins, Developments, and Influence. Springer, New York.

    Google Scholar 

  204. Moore, R.L. (1922), Concerning connectedness im kleinen and a related property. Fund. Math. 3, 232–237.

    Google Scholar 

  205. Morita, K. (1951), On the simple extension of a space with respect to a uniformity I-IV. Proc. Japan Acad. 27, 65–72,130–137,166–171, and 632–636. MR 14–68, 69, 571

    Google Scholar 

  206. Morita, K. (1956), On decomposition spaces of locally compact spaces. Proc. Japan Acad. 32 544–548. MR 19–49

    Google Scholar 

  207. Morita, K. (1975), Cech cohomology and covering dimension for topological spaces. Fund. Math. 87 31–52. MR 50#14706

    Google Scholar 

  208. Morita, K. and J. Nagata (1989), Topics in General Topology. North Holland, Amsterdam. MR 91a: 54001

    Google Scholar 

  209. Mrówka, S. (1956), On universal spaces. Bull. Acad. Polon. Sci., Cl. III 4 479–481. MR 19–669

    Google Scholar 

  210. Mrówka, S. (1957), Some properties of Q-spaces. Bull. Acad. Polon. Sci. Cl. III 5 947–950. MR 20#1967

    Google Scholar 

  211. Mrówka, S. (1958), A property of Hewitt-extension vX of topological spaces. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 6, 95–96. MR 20#3521

    Google Scholar 

  212. Mrówka, S. (1965), Structures of continuous functions III. Rings and lattices of integervalued continuous functions. Indagationes Math. 27, (=Proc. Kon. Nederl. Akad. van Wetensch. 68) 74–82. MR 38#5861

    Google Scholar 

  213. Mrówka, S. (1966), On E-compact spaces II. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 14 597–605. MR 34#6712

    Google Scholar 

  214. Mrówka, S. (1968), Further results on E-compact spaces I. Acta Math. 120 161–185. MR 37#2165

    MathSciNet  MATH  CrossRef  Google Scholar 

  215. Mrówka, S. (1970), Structures of continuous functions I. Acta Math. Acad. Sci. Hungar. 21 239–259. MR 42#4601

    Google Scholar 

  216. Mrówka, S. (1972), Recent results on E-compact spaces and structures of continuous functions. Proc. Univ. Oklahoma Topol. Conf. 1972, 168–221. MR 50#11152

    Google Scholar 

  217. Mrówka, S. (1974), Recent results on E-compact spaces. TOPO 72 - Gen. Topol. Appl., 2nd Pittsburgh Int. Conf. 1972, Springer Lecture Notes Math. 378 298–301. MR 50#14673

    Google Scholar 

  218. Mrówka S. and S. Shore (1965), Structures of continuous functions V. On homomorphisms of structures of continuous functions with 0-dimensional compact domains. Proc. Kon. Nederl. Acad. Wetensch. A 68 92–94. MR 38#5863

    MATH  Google Scholar 

  219. Mysior, A. (1977), Some remarks on embedding properties of completely Hausdorff and totally disconnected spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 25 555–558. MR 57#1412

    Google Scholar 

  220. Mysior, A. (1978), The category of all zero-dimensional realcompact spaces is not simple. Gen. Topol. Appl. 8 259–264. MR 57#7535

    Google Scholar 

  221. Nakagawa, R. (1989), Categorical topology. In: Topics in General Topology (eds. K. Morita and J. Nagata), North Holland, Amsterdam, 563–623. MR 91c: 54015

    Google Scholar 

  222. Nalli, P. (1911), Sopra una definicione di domino piano limitado da una curva continua, senza punti multipli. Rendiconti de Circolo Matematico di Palermo 32, 391–401.

    Google Scholar 

  223. Nel, L.D. (1972), Lattices of lower semi-continuous functions and associated topological spaces. Pacific J. Math. 40 667–673. MR 46#8165

    Google Scholar 

  224. Nel, L.D. (1977), Cartesian closed coreflective hulls. Quaestiones Math. 2 269–283. MR 58#843

    Google Scholar 

  225. Nel, L.D. and R. G. Wilson (1972), Epireflections in the category of T o -spaces. Fund. Math. 75 69–74. MR 46#6285

    Google Scholar 

  226. Nyikos, P. (1971), Not every zerodimensional realcompact space is N-compact. Bull. Amer. Math. Soc. 77 392–396. MR 43#8048

    Google Scholar 

  227. Nyikos, P. (1973), Prabir Roy’s space D is not N-compact. Gen. Topol. Appl. 3 197–210. MR 48#3007

    Google Scholar 

  228. Pierce, R.S. (1961), Rings of integer-valued continuous functions. Trans. Amer. Math. Soc. 100 371–394. MR 24#Al289

    Google Scholar 

  229. Porter, J. R. and R. G. Woods (1988), Extensions and Absolutes of Hausdorff Spaces. Springer-Verlag, New York. MR 89B: 54003

    CrossRef  Google Scholar 

  230. Preuss, G. (1988), Theory of Topological Structures. An Approach to Categorical Topology. Reidel, Dordrecht. MR 89m: 54014

    Google Scholar 

  231. Ramer, A. (1965), Some problems on universal spaces. Bull. Acad. Polon. Sci. Ser. Math. Astr. Phys. 13 291–294. MR 31#6205

    Google Scholar 

  232. Remmert, R. (1993), Die Algebraisierung der Funktionentheorie. Mitteilungen d. Deutschen Mathem.-V. 4, 13–18.

    Google Scholar 

  233. Riesz, F. (1907), Die Genesis des Raumbegriffs. Math. u. Naturwiss. Berichte aus Ungarn 24, 309–353.

    Google Scholar 

  234. Riesz, F. (1909), Stetigkeitsbegriff und abstrakte Mengenlehre. Atti del IV Congresso Internazionale dei Matematici, Roma 1908, Vol. II, 18–24.

    Google Scholar 

  235. Ringel, C.M. (1970), Diagonalisierungspaare I. Math. Z. 117, 249–266. MR 42#7745 Ringleb, P. (1969), Untersuchungen über die Kategorie der geordneten Mengen. Thesis, Free Univ. Berlin.

    Google Scholar 

  236. Robinson, A. (1968), Some thoughts on the history of mathematics. In: Logic and Foundations of Mathematics (eds. D. van Dalen et al.), Wolters-Noordhoff Pub., Groningen, 188–193.

    Google Scholar 

  237. Rosickÿ, J. and W. Tholen (1988), Orthogonal and prereflective subcategories. Cahiers Topol. Geom. Diff. Cat. 29, 203–215. MR 90b: 18003

    Google Scholar 

  238. Roy, P. (1962), Failure of equivalence of dimension concepts for metric spaces. Bull. Amer. Math. Soc. 68, 609–613. MR 25#5495

    Google Scholar 

  239. Roy, P. (1968), Nonequality of dimensions for metric spaces. Trans. Amer. Math. Soc. 134, 117–132. MR 37#3544

    Google Scholar 

  240. Rudin, W. (1973), Functional Analysis. McGraw Hill, New York. MR 51#1315

    Google Scholar 

  241. Saks, S. (1921), Sur l’equivalence de deux théorèmes de la théorie des ensembles. Fund. Math. 2, 1–3.

    Google Scholar 

  242. Salbany, S. (1974), On compact* spaces and compactifications. Proc. Amer. Math. Soc. 45 274–280. MR 50#8443

    Google Scholar 

  243. Samuel, P. (1948), On universal mappings and free topological groups. Bull. Amer. Math. Soc. 54, 591–598. MR 9–605

    Google Scholar 

  244. Samuel, P. (1948a), Ultrafilters and compactifications of uniform spaces. Trans. Amer. Math. Soc. 64, 100–132. MR 10–54

    Google Scholar 

  245. Schwarz F. (1983), Funktionenräume und exponentiale Objekte in punktetrennend initialen Kategorien. Thesis, Univ. Bremen.

    MATH  Google Scholar 

  246. Semadeni, Z. (1963), Projectivity, infectivity, and duality. Rozprawy Mat. 35, 1–47. MR 27#4776

    Google Scholar 

  247. Semadeni, Z. (1971), Banach Spaces of Continuous Functions. Polish Sci. Publ. Warszawa. MR 45#5730

    Google Scholar 

  248. Shirota, T. (1951), On spaces with complete structure. Proc. Japan Acad. 27 513–516. MR 14–68

    Google Scholar 

  249. Shirota, T. (1952), A class of topological spaces. Osaka Math. J. 4, 23–40. MR 14–395

    Google Scholar 

  250. Shirota, T. (1952a), A generalization of a theorem of Kaplansky. Osaka Math. J. 4, 121–132. MR 14–669

    Google Scholar 

  251. Sierpinski, W. (1921), Sur les ensembles connexes et non connexes. Fund. Math. 2, 81–95.

    Google Scholar 

  252. Skula, L. (1969), On a reflective subcategory of the category of topological spaces. Trans. Amer. Math. Soc. 142 37–41. MR 40#1969

    Google Scholar 

  253. van der Slot, J. (1966), Universal topological properties. ZW 1966–011 Math. Centrum, Amsterdam. MR 39#3457

    Google Scholar 

  254. van der Slot, J. (1968), Some properties related to compactness. Thesis, Math. Centrum, Amsterdam. MR 40#871

    Google Scholar 

  255. van der Slot, J. (1969), An elementary proof of the Hewitt-Shirota theorem. Compos. Math. 21 182–184. MR 40#1970

    Google Scholar 

  256. Smirnov, Yu.M. (1952), On proximity spaces. Mat. Sb. (N.S.) 31 (73), 543–574 (Russ., Engl. Transi.: Amer. Math. Soc. Transi. Ser. 2, 38 (1964), 5–35. MR 14–1107

    Google Scholar 

  257. Sonner, J. (1963), Universal and special problems. Math. Z. 82 200–211. MR 28#123

    Google Scholar 

  258. Sonner, J. (1964), Universal solutions and adjoint homomorphisms. Math. Z. 86, 14–20. MR 29#5886

    Google Scholar 

  259. Steenrod, N.E. (1967), A convenient category of topological spaces. Michigan Math. J. 14 133–152. MR 35#970

    MathSciNet  MATH  CrossRef  Google Scholar 

  260. Steiner, A.K. and E.F. Steiner (1973), On semi-uniformities. Fund. Math. 83 47–58. MR 48#9670

    Google Scholar 

  261. Stone, A.H. (1948), Paracompactness and product spaces. Bull. Amer. Math. Soc. 54 977–982. MR 10–204

    Google Scholar 

  262. Stone, M.H. (1937), Applications of the theory of Boolean rings to general topology. Trans. Amer. Math. Soc. 41, 375–481.

    Google Scholar 

  263. Stone, M.H. (1948), On the compactification of topological spaces. Ann. Soc. Polon. Math. 21, 153–160. MR 10–137

    Google Scholar 

  264. Strecker, G. E. (1976), Perfect sources. Springer Lecture Notes Math. 540 605–624. MR 56#9479

    Google Scholar 

  265. Tholen, W. (1987), Reflective subcategories. Topol. Appl. 27, 201–212. MR 89b: 18006

    MathSciNet  MATH  CrossRef  Google Scholar 

  266. Thomas, J.P. (1968), Associated regular and T 3 -spaces. Canad. J. Math. 20 1087–1092. MR 37#6901

    Google Scholar 

  267. Thron, W.J. (1966), Topological Structures. Holt, Rinehart and Winston, New York. MR 34#778

    Google Scholar 

  268. Tietze, H. (1923), Beiträge zur allgemeinen Topologie I. Math. Annalen 88, 290–312.

    Google Scholar 

  269. Trnkovâ, V. (1962), On the theory of categories. (Russian) Comment. Math. Univ. Carolinae 3 9–35. MR 26#3637

    Google Scholar 

  270. Trnkovâ, V., J. Adâmek and J. Rosickÿ (1990), Topological reflections revisited. Proc. Amer. Math. Soc. 108, 605–612. MR 90e: 18004

    Google Scholar 

  271. Tukey, J.W. (1940), Convergence and Uniformity in Topology. Princeton Univ. Press. MR 2–67

    Google Scholar 

  272. Tychonoff, A. (1930), Über die topologische Erweiterung von Räumen. Math. Ann. 102, 544–561.

    Google Scholar 

  273. Tychonoff, A. (1935), Über einen Funktionenraum. Math. Annalen 111, 762–766.

    MathSciNet  CrossRef  Google Scholar 

  274. Tychonoff, A. (1935a), Ein Fixpunktsatz. Math. Annalen 111, 767–776.

    Google Scholar 

  275. Urysohn, P. (1925), Über die Mächtigkeit der zusammenhängenden Mengen. Math. Annalen 94, 262–295.

    Google Scholar 

  276. Urysohn, P. (1926), Sur les classes L de M. Fréchet. Enseignement Math. 25, 77–83.

    Google Scholar 

  277. Vajner, V. (1994), Approaches to reflective hulls of subcategories. Thesis, Univ. Cape Town.

    Google Scholar 

  278. Vedenissoff, N. (1939), Remarks on the dimension of topological spaces. Moscov. Gos. Univ. U. Zap. 30 131–140. MR 2–69

    Google Scholar 

  279. Venkataraman, M. (1962), Directed sets in topology. Math. Student 30 99–100. MR 27#5219

    MathSciNet  MATH  Google Scholar 

  280. Vietoris, L. (1921), Stetige Mengen. Monatsh. f. Mathem. u. Physik 31, 173–204.

    Google Scholar 

  281. Vogt, R.M. (1971), Convenient categories of topological spaces for homotopy theory. Archiv Math. 22, 545–555. MR 45#9323

    Google Scholar 

  282. van der Waerden, B.L. (1935), Nachruf auf Emmy Noether. Math. Annalen 111, 469–474.

    Google Scholar 

  283. Walker R.C. (1974), The Stone-tech Compactification. Springer, Berlin. MR 52#1595

    Google Scholar 

  284. Wallman, H. (1938), Lattices and topological spaces. Ann. Math. 39, 112–126.

    Google Scholar 

  285. Weil, A. (1937), Sur les espaces à structure uniforme et sur la topologie générale. Actualités Scientifiques et Industrielles 551, Herrmann, Paris.

    Google Scholar 

  286. Weyl, H. (1935), Emmy Noether. Scripta Mathem. 3, 200–220.

    MathSciNet  Google Scholar 

  287. Whitehead, J.H.C. (1948), A note on a theorem due to Borsuk. Bull. Amer. Math. Soc. 54, 1125–1132. MR 10–617

    MathSciNet  MATH  CrossRef  Google Scholar 

  288. Whitehead, J.H.C. (1949), Combinatorial homotopy. Bull. Amer. Math. Soc. 55 213–245 and 453–496. MR 11–48

    Google Scholar 

  289. Willard, S. (1968), General Topology. Addison-Wesley, Reading. MR 41#9173

    Google Scholar 

  290. Whyburn, G.T. (1965), Directed families of sets and closedness of functions. Proc. Nat. Acad. Sci. USA 54, 688–692. MR 32#435

    Google Scholar 

  291. Wyler, O. (1971), Top categories and categorical topology. Gen. Topol. Appl. 1 17–28. MR 43#8036

    MathSciNet  MATH  CrossRef  Google Scholar 

  292. Wyler, O. (1992), Bibliography for Categorical Topology. Carnegie Mellon Univ., 51 pages.

    Google Scholar 

  293. Young, G.S. (1946), The introduction of local connectivity by change of topology. Amer. J. Math. 68, 479–494. MR 8–49

    MathSciNet  MATH  CrossRef  Google Scholar 

  294. Zenor, P. (1970), Extending completely regular spaces with inverse limits. Glasnik Mat. Ser. III 5, 157–162. MR 43#1128

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Herrlich, H., Strecker, G. (1997). Categorical Topology — Its Origins, as Exemplified by the Unfolding of the Theory of Topological Reflections and Coreflections before 1971. In: Aull, C.E., Lowen, R. (eds) Handbook of the History of General Topology. History of Topology, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0468-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0468-7_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4820-2

  • Online ISBN: 978-94-017-0468-7

  • eBook Packages: Springer Book Archive