Abstract
Logic today is urged to confront and solve the problem of reasoning unde non-ideal conditions, such as incomplete information or imprecisely formulated statements, as is the case with uncertainty, approximate descriptions or linguistic vagueness. At the same time, Probability theory has widened its traditional field of analysis (the expected frequency of physical phenomena) so as to encompass and analyze general rational expectations. Thus, Probability has placed itself in the position of offering Logic a solution for its own long-awaited generalization. The basis for that turns out to be precisely the shared base underlying the two disciplines. This theoretical base predates their common birth, as seen in the early efforts of Bernoulli and Laplace, as well as in Boole’s 1854 attempt to formalize the “laws of thought” and then, as he claimed, to “derive Logic and Probability” from them. Once we recover (following Popper’s 1938 advice) the underlying formalism, we come, by interpreting it in two different directions, back into either Logic or Probability. The present survey explains the story so far and does the reconstruction work from the logical point of view. The stated aim is to generalize Logic so as to cover, as Boole intended, the whole of rationality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Bibliography
E. W. Adams. Probability and the logic of conditionals, in: J. Hintikka & P. Suppes, eds. Aspects of inductive logic, North Holland, 1968.
A. R. Aronson, B. E. Jacobs, and J. Minker. A note on fuzzy deduction, Journal of the Assoc. for Computing Machinery, 27, 599–603, 1980.
F. Bacchus. Representing and reasoning with probabilistic knowledge, MIT Press, 1990.
Y. Bar-Hillel and R. Carnap. An outline of a theory of semantic information, TR 247 Research Lab. Electronics, MIT, 1952; reproduced in: Y. Bar-Hillel, Logic and information, Addison Wesley (1964)
R. Bellman and M. Gierz. On the analytical formalism of the theory of fuzzy sets, Info. Sci., 5, 149–156, 1973.
R. Bellman and L. Zadeh. Decision-making in a fuzzy environment, Management Science, 17, 141–162, 1970.
R. Bellman and L. Zadeh. Local and fuzzy logics, in: J. M. Dunn & G. Epstein, eds., Modern Uses of Multiple-Valued Logic, Reidel, 1976.
M. Black. Vagueness, Phil. Sci., 4, 427–455, 1937.
L. Bolc and P. Borowik. Many-valued logics, Springer, 1992.
G. Boole. An Investigation of the Laws of Thought, Dover, N.Y. (1958), 1954.
R. Carnap. Logical Foundations of Probability, U. Chicago Press, 1950.
R. Carnap. The aim of inductive logic, in: E. Nagel, P. Suppes & A. Tarski, eds., Logic, Methodology and Philosophy of Science, Stanford, 1962.
J. Cohen. What I have learned (so far), Am. Psychologist, 1307–1308, 1990.
R. T. Cox. The algebra of probable inferences, Johns Hopkins U. Press, 1961.
B. de Finetti. Sul significato soggettivo della probabilità, Fundamenta Mathematicae, 17, 298–329, 1931.
B. de Finetti. La prévision, ses lois logiques, ses sources subjectives, Annales de l’Institut Henri Poincaré, 7, 1–68, English translation in: H. E. Kyburg Jr. & H.E. Smokler, eds., Studies in subjective probability, John Wiley (1964), 1931.
B. de Finetti. Teoria delle probabilità, Einaudi, English translation: Theory of probability, John Wiley (1974), 1070.
A. de Luca and S. Termini. A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory, Info. and Control, 20, 301, 1972.
D. Dubois and H. Prade. Théorie des possibilités, Masson (2nd edition), 1987.
D. Dubois, J. Lang and H. Prade. Possibilistic logic, in: S. Abramsky, D. Gabbay & T.S. Maibaum, eds., Handbook of Logic in Artificial Intelligence (Vol. 3), Oxford Univ. Press. 1993.
R. Duda, P. Hart and N. Nilsson. Subjective Bayesian methods for rule-based information systems, in: B.W. Webber & N. Nilsson, eds., Readings in Artificial Intelligence, Morgan Kaufmann, San Mateo (1981), 1976.
R. Fagin, J. Y. Halpern and N. Megiddo. A logic for reasoning about probabilities, Information & Computation, 87, 78–128, 1990.
J. E. Fenstad. Representations of probabilities defined on first order languages, in: J.N. Crossley, ed., Sets, Models and Recursion Theory, North Holland, 1967.
J. E. Fenstad. The structure of logical probabilities, Synthese, 18, 1–23, 1968.
J. E. Fenstad. The structure of probabilities defined on first order languages, in: R.C. Jeffrey, ed., Studies in inductive logic and probability II, U. of California Press, 1980
J. E. Fenstad. Logic and probability, in: E. Agazzi, ed., Modern Logic. A survey, Reidel, 1981.
H. H. Field. Logic, meaning and conceptual role, J. of Phil. Logic, 74, 379–409, 1977.
N. Friedman and J. Y. Halpern. Plausibility measures; a user’s guide (draft available on WWW at http//:robotics.stanford.edu), 1995.
H. Gaifman. Concerning measures in first order calculi, Israel J. of Mathematics, 2, 1–18, 1964.
B. R. Gaines. Fuzzy and probability uncertainty logics, Info. and Control, 38, 154–169, 1978.
P. Garbolino, H. E. Kyburg, et al.. Probability and logic, J. of Applied Non-Classical Logics, 1, 105–197, 1991.
P. Gärdenfors. Knowledge in flux, MIT Press, 1988.
M. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence, Morgan Kaufmann, 1987.
G. Gerla. Inferences in probability logic, Artificial Intelligence, 70, 33–52, 1994.
I. J. Good. Probability and the weighting of evidence, Griffin, London, 1950.
I. J. Good. Subjective probability as the measure of a non-measurable set, in: E. Nagel, P. Suppes & A. Tarski, eds., Logic, Methodology and Philosophy of Science. Stanford. 1962.
S. Gottwald. Mehrwertige Logik, Akademie-Verlag, 1989.
B. Grosof. Evidential confirmation as transformed probability, in: Kanal, L.N., & Lemmer, J.F., eds. : 1986, Uncertainty in Artificial Intelligence, North Holland, 1986.
S. Haack. Deviant logic, Cambridge, 1974.
T. Hailperin. Probability logic, Notre Dame J. of Formal Logic, 25, 198–212, 1984.
P. Hájek. Fuzzy sets and arithmetical hierarchy, Fuzzy Sets and Systems (to appear)
J. Y. Halpern. An analysis of first order logics of probability, Artificial Intelligence, 46, 311–350, 1990.
H. Hamacher. On logical connectives of fuzzy statements and their affiliated truth function, Proc. 3rd Eur. Meet. Cyber. & Systems Res., Vienna, 1976.
W. L. Harper. Rational belief change, Popper functions, and counterfactuals, Synthese, 30, 221–262, 1975.
D. Heckermann. Probabilistic interpretations for MYCIN’s certainty factors, in: Kanal, L.N., & Lemmer, J.F., eds. : 1986, Uncertainty in Artificial Intelligence, North Holland, 1986.
J. Hintikka and J. Pietarinen. Probabilistic inference and the concept of total evidence, in: J. Hintikka & P. Suppes, eds. Aspects of inductive logic, North Holland, 1968.
A. Horn and A. Tarski. Measures in Boolean algebras, Trans. Am. Math. Soc., 64, 467–497, 1948.
L. N. Kanal and J. F. Lemmer, eds. Uncertainty in Artificial Intelligence, North Holland, 1986.
J. M. Keynes. A treatise on probability, Macmillan, NY, 1921.
S. C. Kleene. On notation for ordinal numbers, J. of Symbolic Logic 3, 150–155, 1938.
A. N. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer, English translation: Foundations of the theory of probability, Chelsea, NY (1956), 1933.
B. O. Koopman. The bases of probability, Bulletin Am. Math. Soc., 46, 763–774, 1940.
S. Koppelberg, J. D. Monk and R. Bonnet, eds. Handbook of Boolean algebras (3 vols.), North Holland, 1989.
H. E. Kyburg Jr. Uncertainty logics, in: S. Abramsky, D. Gabbay & T.S. Maibaum, eds., Handbook of Logic in Artificial Intelligence (Vol. 3), Oxford Univ. Press, 1993.
R. Jeffrey. The logic of decision, North Holland, 1965.
R. Jeffrey. From logical probability to probability logic, 10th Int. Congress of Logic, Methodology & Phil. of Sc., Aug. 19–25, 1995, Florence, 1995.
H. Jeffreys. Theory of probability, Oxford, 1939.
P. N. Johnson-Laird. Models of deduction, in: R.J. Falmagne, ed., Reasoning: Representation and process in children and adults, L. Erlbaum, 1975.
P. N. Johnson-Laird. Mental models, Cambridge Univ. Press, 1983.
P. S. de Laplace. Mémoire sur la probabilité des causes par les événements, Mémoires de l’Académie des Sciences de Paris, Tome VI, 621, 1774.
P. S. de Laplace. Théorie analytique des probabilités (3rd ed.), Courcier, 1820.
H. Leblanc. On a recent allotment of probabilities to open and closed sentences, Notre Dame J. of Formal Logic, 1, 171–175, 1960.
H. Leblanc. Alternatives to standard first-order semantics, in: D. Gabbay & F. Guenthner, eds., Handbook of Philosophical Logic, Second Edition, Volume 2, pp. 53–132 Kluwer, Dordrecht, 2001.
R. C. T. Lee. Fuzzy logic and the resolution principle, Journal of the Assoc. for Computing Machinery, 19, 109–110, 1972.
D. Lewis. Probabilities of conditionals and conditional probabilities, Philosophical Review, 85, 297–315, 1976.
J. Loṡ. Remarks on foundations of probability, Proc. Int. Congress of Mathematicians, Stockholm, 1962.
J. Lukasiewicz. Ologice trójwartościowej, Ruch Filozoficzny (Lwów), 5, 169–171, 1920; see L. Borkowski, ed., J. Lukasiewicz: Selected works, North Holland (1970).
J. Lukasiewicz. Die Logik und das Grundlagenproblem, in: F. Gonseth, ed., Les entretiens de Zurich, 1938, Leemann (1941) (pages 82–100, discussion pages 100–108).
J. Lukasiewicz and A. Tarski. Untersuchungen über den Aussagenkalkül, Comptes Rendus Soc. Sci. & Lettres Varsovie, Classe III, 51–77, 1930; translated by J.H. Woodger in: Alfred Tarski, Logic, Semantics, Metamathematics, Oxford (1956).
E. H. Mamdani. Application of fuzzy logic to approximate reasoning using linguistic synthesis, IEEE Trans. on Computers, 26, 1182–1191, 1977.
H. MacColl. Symbolic Logic and its Applications, London, 1906.
D. W. Miller. On distance from the truth as a true distance, in: J. Hintikka, I. Niinilnuoto & E. Saarinen, eds., Essays in Mathematical and Philosophical Logic, Reidel, 1978.
D. W. Miller. A Geometry of Logic, in: H. Skala, S. Termini & E. Trillas, eds., Aspects of Vagueness, Reidel, 1981.
N. Nilsson. Probabilistic logic, Artificial Intelligence, 28, 71–87, 1986.
N. Nilsson. Probabilistic logic revisited, Artificial Intelligence, 59, 39–42, 1993.
G. Paass. Probabilistic logic, in: P. Smets, E.H. Mamdani, D. Dubois & H. Prade, eds., Non-standard logics for automated reasoning, Academic Press, 1988.
J. Pavelka. On fuzzy logic I, II, III, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 25, 45–52, 119–134, 447–464, 1979.
J. Pearl. Probabilistic reasoning in intelligent systems, Morgan Kaufmann, San Mateo, 1988.
C. S. Peirce. Minute Logic, unpublished, 1902; (see ref. also in Rescher [1969]), in: C.S. Peirce, Collected Papers, Harvard (1933)
K. R. Popper. The Logic of Scientific Discovery, Hutchinson, 1959; (includes Appendix II, originally appeared in Mind, 1938, and Appendix IV, originally appeared in Br. J. Phil. Sc., 1955)
K. R. Popper. Some comments on truth and the growth of knowledge, in: E. Nagel, P. Suppes & A. Tarski, eds., Logic, Methodology and Philosophy of Science, Stanford, 1962.
K. R. Popper. Two faces of commonsense, in: K. R. Popper, Objective Knowledge, Oxford, 1972.
K. R. Popper and D. W. Miller. Why probabilistic support is not inductive, Phil. Trans. R. Soc. Lond., A 321, 569–591, 1987.
F. P. Ramsey. Truth and probability, 1926; in: Ramsey, F. P.: 1931, The Foundations of Mathematics, Harcourt Brace, NY.
H. Reichenbach. Wahrscheinlichkeitslogik, Erkenntnis, 5, 37–43, 1935.
H. Reichenbach. Wahrscheinlichkeitslehre, 1935; English translation: The Theory of Probability, U. of California Press (1949)
N. Rescher. Many-Valued Logic, McGraw-Hill, 1969.
W. Rodder. On ‘And’ and ‘Or’ connectives in Fuzzy Set Theory, T. Report, I. für Wirtschaftswiß., Aachen, 1975.
T. Sales. Una lògica multivalent booleana, Actes 1 er Congrés Català de Lògica Matemàtica (Barcelona, January 1982), 113–116, 1982.
T. Sales. Contribució a l’anàlisi lògica de la imprecisió, Universitat Politècnica de Catalunya (Ph. D. dissertation), 1982.
T. Sales. Propositional logic as Boolean many-valued logic, TR LSI-92–20-R, Universitat Politècnica de Catalunya, 1992.
T. Sales. Between logic and probability, Mathware & Soft Computing, 1, 99–138, 1994.
T. Sales. Logic of assertions, Theoria, 25, 1996.
L. J. Savage. Foundations of Statistics, Dover, NY (1972), 1954.
D. Scott. Does many-valued logic have any use?, in: S. Körner, ed., Philosophy of Logic, Blackwell (1976), 1973.
D. Scott and P. Krauss. Assigning probabilities to logical formulas, in: J. Hintikka & P. Suppes, eds., Aspects of Inductive Logic, North Holland, 1968.
G. Shafer. A Mathematical Theory of Evidence, Princeton, 1976.
G. Shafer. A unified semantics for logic and probability, Artificial Intelligence and Mathematics, Fort Lauderdale, Fla., Jan. 3–5 1996.
E. H. Shortliffe. MYCIN, American Elsevier, 1976.
C. A. B. Smith. Consistency in statististical inference and decision, J. of the Royal Stat. Soc., Ser. B 23, 218–258, 1961.
R. Stalnaker., R.: 1970, Probability and conditionals, Philosophy of Science, 37, 64–80, 1970.
P. Suppes. Probabilistic inference and the concept of total evidence, in: J. Hintikka & P. Suppes, eds., Aspects of Inductive Logic, North Holland, 1968.
P. Suppes. Logique du probable, Flammarion, Paris, 1979.
A. Tarski. Wahrscheinlichkeitslehre und mehrwertige Logik, Erkenntnis, 5, 174–175, 1935.
A. Tarski. The concept of truth in formalized languages, in: J.H. Woodger in: Alfred Tarski, Logic, Semantics, Metamathematics, Oxford (1956), 1935.
E. Trillas, C. Alsina, and L.I. Valverde. Do we need max, min and l-j in Fuzzy Set Theory?, in: R. Yager, ed., Recent Developments of Fuzzy Set and Possibility Theory, Pergamon, 1982.
A. Urquhart. Many-valued logic, in: D. Gabbay & F. Guenthner, eds., Handbook of Philosophical Logic (Vol. 3), Reidel, 1986.
B. C. van Fraassen. Presuppositions, implication and self-reference, J. Phil., 65, 1968.
B. C. van Fraassen. Probabilistic semantics objectified I, II, J. of Phil. Log., 10, 371–394, 495–510, 1981.
S. Watanabe. Modified concepts of logic, probability and information based on generalized continuous characteristic function, Info. and Control, 15, 1–21, 1969.
L. Wittgenstein. Tractatus Logico-Philosophicus, London, 1922.
P. W. Woodruff. Conditionals and generalized conditional probability, 10th Int. Congress of Logic, Methodology & Phil. of Sc., Aug. 19–25, 1995, Florence.
R. Yager. A note on fuzziness in a standard uncertainty logic, IEEE Trans. Systems, Man & Cyb., 9, 387–388, 1979.
L. A. Zadeh. Fuzzy sets, Information and Control, 8, 338–353, 1965.
H. J. Zimmermann. Results of empirical work on fuzzy sets, Int. Conf. on Applied Gen. Systems Research, Binghamton, NY, 1977.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Sales, T. (2002). Logic as General Rationality: A Survey. In: Gabbay, D.M., Guenthner, F. (eds) Handbook of Philosophical Logic. Handbook of Philosophical Logic, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0464-9_6
Download citation
DOI: https://doi.org/10.1007/978-94-017-0464-9_6
Publisher Name: Springer, Dordrecht
Print ISBN: 978-90-481-6055-6
Online ISBN: 978-94-017-0464-9
eBook Packages: Springer Book Archive