Skip to main content

Logic as General Rationality: A Survey

  • Chapter
Handbook of Philosophical Logic

Part of the book series: Handbook of Philosophical Logic ((HALO,volume 9))

Abstract

Logic today is urged to confront and solve the problem of reasoning unde non-ideal conditions, such as incomplete information or imprecisely formulated statements, as is the case with uncertainty, approximate descriptions or linguistic vagueness. At the same time, Probability theory has widened its traditional field of analysis (the expected frequency of physical phenomena) so as to encompass and analyze general rational expectations. Thus, Probability has placed itself in the position of offering Logic a solution for its own long-awaited generalization. The basis for that turns out to be precisely the shared base underlying the two disciplines. This theoretical base predates their common birth, as seen in the early efforts of Bernoulli and Laplace, as well as in Boole’s 1854 attempt to formalize the “laws of thought” and then, as he claimed, to “derive Logic and Probability” from them. Once we recover (following Popper’s 1938 advice) the underlying formalism, we come, by interpreting it in two different directions, back into either Logic or Probability. The present survey explains the story so far and does the reconstruction work from the logical point of view. The stated aim is to generalize Logic so as to cover, as Boole intended, the whole of rationality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  1. E. W. Adams. Probability and the logic of conditionals, in: J. Hintikka & P. Suppes, eds. Aspects of inductive logic, North Holland, 1968.

    Google Scholar 

  2. A. R. Aronson, B. E. Jacobs, and J. Minker. A note on fuzzy deduction, Journal of the Assoc. for Computing Machinery, 27, 599–603, 1980.

    Article  Google Scholar 

  3. F. Bacchus. Representing and reasoning with probabilistic knowledge, MIT Press, 1990.

    Google Scholar 

  4. Y. Bar-Hillel and R. Carnap. An outline of a theory of semantic information, TR 247 Research Lab. Electronics, MIT, 1952; reproduced in: Y. Bar-Hillel, Logic and information, Addison Wesley (1964)

    Google Scholar 

  5. R. Bellman and M. Gierz. On the analytical formalism of the theory of fuzzy sets, Info. Sci., 5, 149–156, 1973.

    Article  Google Scholar 

  6. R. Bellman and L. Zadeh. Decision-making in a fuzzy environment, Management Science, 17, 141–162, 1970.

    Article  Google Scholar 

  7. R. Bellman and L. Zadeh. Local and fuzzy logics, in: J. M. Dunn & G. Epstein, eds., Modern Uses of Multiple-Valued Logic, Reidel, 1976.

    Google Scholar 

  8. M. Black. Vagueness, Phil. Sci., 4, 427–455, 1937.

    Article  Google Scholar 

  9. L. Bolc and P. Borowik. Many-valued logics, Springer, 1992.

    Google Scholar 

  10. G. Boole. An Investigation of the Laws of Thought, Dover, N.Y. (1958), 1954.

    Google Scholar 

  11. R. Carnap. Logical Foundations of Probability, U. Chicago Press, 1950.

    Google Scholar 

  12. R. Carnap. The aim of inductive logic, in: E. Nagel, P. Suppes & A. Tarski, eds., Logic, Methodology and Philosophy of Science, Stanford, 1962.

    Google Scholar 

  13. J. Cohen. What I have learned (so far), Am. Psychologist, 1307–1308, 1990.

    Google Scholar 

  14. R. T. Cox. The algebra of probable inferences, Johns Hopkins U. Press, 1961.

    Google Scholar 

  15. B. de Finetti. Sul significato soggettivo della probabilità, Fundamenta Mathematicae, 17, 298–329, 1931.

    Google Scholar 

  16. B. de Finetti. La prévision, ses lois logiques, ses sources subjectives, Annales de l’Institut Henri Poincaré, 7, 1–68, English translation in: H. E. Kyburg Jr. & H.E. Smokler, eds., Studies in subjective probability, John Wiley (1964), 1931.

    Google Scholar 

  17. B. de Finetti. Teoria delle probabilità, Einaudi, English translation: Theory of probability, John Wiley (1974), 1070.

    Google Scholar 

  18. A. de Luca and S. Termini. A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory, Info. and Control, 20, 301, 1972.

    Article  Google Scholar 

  19. D. Dubois and H. Prade. Théorie des possibilités, Masson (2nd edition), 1987.

    Google Scholar 

  20. D. Dubois, J. Lang and H. Prade. Possibilistic logic, in: S. Abramsky, D. Gabbay & T.S. Maibaum, eds., Handbook of Logic in Artificial Intelligence (Vol. 3), Oxford Univ. Press. 1993.

    Google Scholar 

  21. R. Duda, P. Hart and N. Nilsson. Subjective Bayesian methods for rule-based information systems, in: B.W. Webber & N. Nilsson, eds., Readings in Artificial Intelligence, Morgan Kaufmann, San Mateo (1981), 1976.

    Google Scholar 

  22. R. Fagin, J. Y. Halpern and N. Megiddo. A logic for reasoning about probabilities, Information & Computation, 87, 78–128, 1990.

    Article  Google Scholar 

  23. J. E. Fenstad. Representations of probabilities defined on first order languages, in: J.N. Crossley, ed., Sets, Models and Recursion Theory, North Holland, 1967.

    Google Scholar 

  24. J. E. Fenstad. The structure of logical probabilities, Synthese, 18, 1–23, 1968.

    Article  Google Scholar 

  25. J. E. Fenstad. The structure of probabilities defined on first order languages, in: R.C. Jeffrey, ed., Studies in inductive logic and probability II, U. of California Press, 1980

    Google Scholar 

  26. J. E. Fenstad. Logic and probability, in: E. Agazzi, ed., Modern Logic. A survey, Reidel, 1981.

    Google Scholar 

  27. H. H. Field. Logic, meaning and conceptual role, J. of Phil. Logic, 74, 379–409, 1977.

    Google Scholar 

  28. N. Friedman and J. Y. Halpern. Plausibility measures; a user’s guide (draft available on WWW at http//:robotics.stanford.edu), 1995.

    Google Scholar 

  29. H. Gaifman. Concerning measures in first order calculi, Israel J. of Mathematics, 2, 1–18, 1964.

    Article  Google Scholar 

  30. B. R. Gaines. Fuzzy and probability uncertainty logics, Info. and Control, 38, 154–169, 1978.

    Article  Google Scholar 

  31. P. Garbolino, H. E. Kyburg, et al.. Probability and logic, J. of Applied Non-Classical Logics, 1, 105–197, 1991.

    Google Scholar 

  32. P. Gärdenfors. Knowledge in flux, MIT Press, 1988.

    Google Scholar 

  33. M. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence, Morgan Kaufmann, 1987.

    Google Scholar 

  34. G. Gerla. Inferences in probability logic, Artificial Intelligence, 70, 33–52, 1994.

    Article  Google Scholar 

  35. I. J. Good. Probability and the weighting of evidence, Griffin, London, 1950.

    Google Scholar 

  36. I. J. Good. Subjective probability as the measure of a non-measurable set, in: E. Nagel, P. Suppes & A. Tarski, eds., Logic, Methodology and Philosophy of Science. Stanford. 1962.

    Google Scholar 

  37. S. Gottwald. Mehrwertige Logik, Akademie-Verlag, 1989.

    Google Scholar 

  38. B. Grosof. Evidential confirmation as transformed probability, in: Kanal, L.N., & Lemmer, J.F., eds. : 1986, Uncertainty in Artificial Intelligence, North Holland, 1986.

    Google Scholar 

  39. S. Haack. Deviant logic, Cambridge, 1974.

    Google Scholar 

  40. T. Hailperin. Probability logic, Notre Dame J. of Formal Logic, 25, 198–212, 1984.

    Article  Google Scholar 

  41. P. Hájek. Fuzzy sets and arithmetical hierarchy, Fuzzy Sets and Systems (to appear)

    Google Scholar 

  42. J. Y. Halpern. An analysis of first order logics of probability, Artificial Intelligence, 46, 311–350, 1990.

    Google Scholar 

  43. H. Hamacher. On logical connectives of fuzzy statements and their affiliated truth function, Proc. 3rd Eur. Meet. Cyber. & Systems Res., Vienna, 1976.

    Google Scholar 

  44. W. L. Harper. Rational belief change, Popper functions, and counterfactuals, Synthese, 30, 221–262, 1975.

    Article  Google Scholar 

  45. D. Heckermann. Probabilistic interpretations for MYCIN’s certainty factors, in: Kanal, L.N., & Lemmer, J.F., eds. : 1986, Uncertainty in Artificial Intelligence, North Holland, 1986.

    Google Scholar 

  46. J. Hintikka and J. Pietarinen. Probabilistic inference and the concept of total evidence, in: J. Hintikka & P. Suppes, eds. Aspects of inductive logic, North Holland, 1968.

    Google Scholar 

  47. A. Horn and A. Tarski. Measures in Boolean algebras, Trans. Am. Math. Soc., 64, 467–497, 1948.

    Article  Google Scholar 

  48. L. N. Kanal and J. F. Lemmer, eds. Uncertainty in Artificial Intelligence, North Holland, 1986.

    Google Scholar 

  49. J. M. Keynes. A treatise on probability, Macmillan, NY, 1921.

    Google Scholar 

  50. S. C. Kleene. On notation for ordinal numbers, J. of Symbolic Logic 3, 150–155, 1938.

    Article  Google Scholar 

  51. A. N. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer, English translation: Foundations of the theory of probability, Chelsea, NY (1956), 1933.

    Google Scholar 

  52. B. O. Koopman. The bases of probability, Bulletin Am. Math. Soc., 46, 763–774, 1940.

    Article  Google Scholar 

  53. S. Koppelberg, J. D. Monk and R. Bonnet, eds. Handbook of Boolean algebras (3 vols.), North Holland, 1989.

    Google Scholar 

  54. H. E. Kyburg Jr. Uncertainty logics, in: S. Abramsky, D. Gabbay & T.S. Maibaum, eds., Handbook of Logic in Artificial Intelligence (Vol. 3), Oxford Univ. Press, 1993.

    Google Scholar 

  55. R. Jeffrey. The logic of decision, North Holland, 1965.

    Google Scholar 

  56. R. Jeffrey. From logical probability to probability logic, 10th Int. Congress of Logic, Methodology & Phil. of Sc., Aug. 19–25, 1995, Florence, 1995.

    Google Scholar 

  57. H. Jeffreys. Theory of probability, Oxford, 1939.

    Google Scholar 

  58. P. N. Johnson-Laird. Models of deduction, in: R.J. Falmagne, ed., Reasoning: Representation and process in children and adults, L. Erlbaum, 1975.

    Google Scholar 

  59. P. N. Johnson-Laird. Mental models, Cambridge Univ. Press, 1983.

    Google Scholar 

  60. P. S. de Laplace. Mémoire sur la probabilité des causes par les événements, Mémoires de l’Académie des Sciences de Paris, Tome VI, 621, 1774.

    Google Scholar 

  61. P. S. de Laplace. Théorie analytique des probabilités (3rd ed.), Courcier, 1820.

    Google Scholar 

  62. H. Leblanc. On a recent allotment of probabilities to open and closed sentences, Notre Dame J. of Formal Logic, 1, 171–175, 1960.

    Article  Google Scholar 

  63. H. Leblanc. Alternatives to standard first-order semantics, in: D. Gabbay & F. Guenthner, eds., Handbook of Philosophical Logic, Second Edition, Volume 2, pp. 53–132 Kluwer, Dordrecht, 2001.

    Google Scholar 

  64. R. C. T. Lee. Fuzzy logic and the resolution principle, Journal of the Assoc. for Computing Machinery, 19, 109–110, 1972.

    Article  Google Scholar 

  65. D. Lewis. Probabilities of conditionals and conditional probabilities, Philosophical Review, 85, 297–315, 1976.

    Article  Google Scholar 

  66. J. Loṡ. Remarks on foundations of probability, Proc. Int. Congress of Mathematicians, Stockholm, 1962.

    Google Scholar 

  67. J. Lukasiewicz. Ologice trójwartościowej, Ruch Filozoficzny (Lwów), 5, 169–171, 1920; see L. Borkowski, ed., J. Lukasiewicz: Selected works, North Holland (1970).

    Google Scholar 

  68. J. Lukasiewicz. Die Logik und das Grundlagenproblem, in: F. Gonseth, ed., Les entretiens de Zurich, 1938, Leemann (1941) (pages 82–100, discussion pages 100–108).

    Google Scholar 

  69. J. Lukasiewicz and A. Tarski. Untersuchungen über den Aussagenkalkül, Comptes Rendus Soc. Sci. & Lettres Varsovie, Classe III, 51–77, 1930; translated by J.H. Woodger in: Alfred Tarski, Logic, Semantics, Metamathematics, Oxford (1956).

    Google Scholar 

  70. E. H. Mamdani. Application of fuzzy logic to approximate reasoning using linguistic synthesis, IEEE Trans. on Computers, 26, 1182–1191, 1977.

    Article  Google Scholar 

  71. H. MacColl. Symbolic Logic and its Applications, London, 1906.

    Google Scholar 

  72. D. W. Miller. On distance from the truth as a true distance, in: J. Hintikka, I. Niinilnuoto & E. Saarinen, eds., Essays in Mathematical and Philosophical Logic, Reidel, 1978.

    Google Scholar 

  73. D. W. Miller. A Geometry of Logic, in: H. Skala, S. Termini & E. Trillas, eds., Aspects of Vagueness, Reidel, 1981.

    Google Scholar 

  74. N. Nilsson. Probabilistic logic, Artificial Intelligence, 28, 71–87, 1986.

    Article  Google Scholar 

  75. N. Nilsson. Probabilistic logic revisited, Artificial Intelligence, 59, 39–42, 1993.

    Article  Google Scholar 

  76. G. Paass. Probabilistic logic, in: P. Smets, E.H. Mamdani, D. Dubois & H. Prade, eds., Non-standard logics for automated reasoning, Academic Press, 1988.

    Google Scholar 

  77. J. Pavelka. On fuzzy logic I, II, III, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 25, 45–52, 119–134, 447–464, 1979.

    Article  Google Scholar 

  78. J. Pearl. Probabilistic reasoning in intelligent systems, Morgan Kaufmann, San Mateo, 1988.

    Google Scholar 

  79. C. S. Peirce. Minute Logic, unpublished, 1902; (see ref. also in Rescher [1969]), in: C.S. Peirce, Collected Papers, Harvard (1933)

    Google Scholar 

  80. K. R. Popper. The Logic of Scientific Discovery, Hutchinson, 1959; (includes Appendix II, originally appeared in Mind, 1938, and Appendix IV, originally appeared in Br. J. Phil. Sc., 1955)

    Google Scholar 

  81. K. R. Popper. Some comments on truth and the growth of knowledge, in: E. Nagel, P. Suppes & A. Tarski, eds., Logic, Methodology and Philosophy of Science, Stanford, 1962.

    Google Scholar 

  82. K. R. Popper. Two faces of commonsense, in: K. R. Popper, Objective Knowledge, Oxford, 1972.

    Google Scholar 

  83. K. R. Popper and D. W. Miller. Why probabilistic support is not inductive, Phil. Trans. R. Soc. Lond., A 321, 569–591, 1987.

    Article  Google Scholar 

  84. F. P. Ramsey. Truth and probability, 1926; in: Ramsey, F. P.: 1931, The Foundations of Mathematics, Harcourt Brace, NY.

    Google Scholar 

  85. H. Reichenbach. Wahrscheinlichkeitslogik, Erkenntnis, 5, 37–43, 1935.

    Article  Google Scholar 

  86. H. Reichenbach. Wahrscheinlichkeitslehre, 1935; English translation: The Theory of Probability, U. of California Press (1949)

    Google Scholar 

  87. N. Rescher. Many-Valued Logic, McGraw-Hill, 1969.

    Google Scholar 

  88. W. Rodder. On ‘And’ and ‘Or’ connectives in Fuzzy Set Theory, T. Report, I. für Wirtschaftswiß., Aachen, 1975.

    Google Scholar 

  89. T. Sales. Una lògica multivalent booleana, Actes 1 er Congrés Català de Lògica Matemàtica (Barcelona, January 1982), 113–116, 1982.

    Google Scholar 

  90. T. Sales. Contribució a l’anàlisi lògica de la imprecisió, Universitat Politècnica de Catalunya (Ph. D. dissertation), 1982.

    Google Scholar 

  91. T. Sales. Propositional logic as Boolean many-valued logic, TR LSI-92–20-R, Universitat Politècnica de Catalunya, 1992.

    Google Scholar 

  92. T. Sales. Between logic and probability, Mathware & Soft Computing, 1, 99–138, 1994.

    Google Scholar 

  93. T. Sales. Logic of assertions, Theoria, 25, 1996.

    Google Scholar 

  94. L. J. Savage. Foundations of Statistics, Dover, NY (1972), 1954.

    Google Scholar 

  95. D. Scott. Does many-valued logic have any use?, in: S. Körner, ed., Philosophy of Logic, Blackwell (1976), 1973.

    Google Scholar 

  96. D. Scott and P. Krauss. Assigning probabilities to logical formulas, in: J. Hintikka & P. Suppes, eds., Aspects of Inductive Logic, North Holland, 1968.

    Google Scholar 

  97. G. Shafer. A Mathematical Theory of Evidence, Princeton, 1976.

    Google Scholar 

  98. G. Shafer. A unified semantics for logic and probability, Artificial Intelligence and Mathematics, Fort Lauderdale, Fla., Jan. 3–5 1996.

    Google Scholar 

  99. E. H. Shortliffe. MYCIN, American Elsevier, 1976.

    Google Scholar 

  100. C. A. B. Smith. Consistency in statististical inference and decision, J. of the Royal Stat. Soc., Ser. B 23, 218–258, 1961.

    Google Scholar 

  101. R. Stalnaker., R.: 1970, Probability and conditionals, Philosophy of Science, 37, 64–80, 1970.

    Article  Google Scholar 

  102. P. Suppes. Probabilistic inference and the concept of total evidence, in: J. Hintikka & P. Suppes, eds., Aspects of Inductive Logic, North Holland, 1968.

    Google Scholar 

  103. P. Suppes. Logique du probable, Flammarion, Paris, 1979.

    Google Scholar 

  104. A. Tarski. Wahrscheinlichkeitslehre und mehrwertige Logik, Erkenntnis, 5, 174–175, 1935.

    Article  Google Scholar 

  105. A. Tarski. The concept of truth in formalized languages, in: J.H. Woodger in: Alfred Tarski, Logic, Semantics, Metamathematics, Oxford (1956), 1935.

    Google Scholar 

  106. E. Trillas, C. Alsina, and L.I. Valverde. Do we need max, min and l-j in Fuzzy Set Theory?, in: R. Yager, ed., Recent Developments of Fuzzy Set and Possibility Theory, Pergamon, 1982.

    Google Scholar 

  107. A. Urquhart. Many-valued logic, in: D. Gabbay & F. Guenthner, eds., Handbook of Philosophical Logic (Vol. 3), Reidel, 1986.

    Google Scholar 

  108. B. C. van Fraassen. Presuppositions, implication and self-reference, J. Phil., 65, 1968.

    Google Scholar 

  109. B. C. van Fraassen. Probabilistic semantics objectified I, II, J. of Phil. Log., 10, 371–394, 495–510, 1981.

    Article  Google Scholar 

  110. S. Watanabe. Modified concepts of logic, probability and information based on generalized continuous characteristic function, Info. and Control, 15, 1–21, 1969.

    Article  Google Scholar 

  111. L. Wittgenstein. Tractatus Logico-Philosophicus, London, 1922.

    Google Scholar 

  112. P. W. Woodruff. Conditionals and generalized conditional probability, 10th Int. Congress of Logic, Methodology & Phil. of Sc., Aug. 19–25, 1995, Florence.

    Google Scholar 

  113. R. Yager. A note on fuzziness in a standard uncertainty logic, IEEE Trans. Systems, Man & Cyb., 9, 387–388, 1979.

    Article  Google Scholar 

  114. L. A. Zadeh. Fuzzy sets, Information and Control, 8, 338–353, 1965.

    Article  Google Scholar 

  115. H. J. Zimmermann. Results of empirical work on fuzzy sets, Int. Conf. on Applied Gen. Systems Research, Binghamton, NY, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sales, T. (2002). Logic as General Rationality: A Survey. In: Gabbay, D.M., Guenthner, F. (eds) Handbook of Philosophical Logic. Handbook of Philosophical Logic, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0464-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0464-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6055-6

  • Online ISBN: 978-94-017-0464-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics