Skip to main content

Proof Theory and Meaning

  • Chapter
Handbook of Philosophical Logic

Part of the book series: Handbook of Philosophical Logic ((HALO,volume 9))

Abstract

The meaning of a sentence determines how the truth of the proposition expressed by the sentence may be proved and hence one would expect proof theory to be influenced by meaning-theoretical considerations. In the present chapter we consider a proposal that also reverses the above prior-ities and determines meaning in terms of proof. The proposal originates in the criticism that Michael Dummett has voiced against a realist, truth-theoretical, conception of meaning and has been developed largely by him and Dag Prawitz, whose normalisation procedures in technical proof theory constitute the main technical basis of the proposal.

Dedicated to Stig Kanger on the occasion of his 60th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  1. P. Aczel. The strength of Martin-Löf’s type theory with one universe. In Proceedings of the Symposium on Mathematical Logic (Oulo 1974), S. Mietinen and J. Väänänen, eds. pp. 1–32, 1977. Report No 2, Department of Philosophy, Univeristy of Helsinki.

    Google Scholar 

  2. P. Aczel. the type theoretic interpretation of constructive set theory. In Logic Colloquium 1977, A. Macintyre et al., eds. pp. 55–66, 1978.

    Google Scholar 

  3. P. Aczel. Frege structures and the notions of proposition, truth and set. In The Kleene Symposium, J. Barwise et al., eds, pp. 31–59. North-Holland, Amsterdam, 1980.

    Chapter  Google Scholar 

  4. P. Aczel. The type theoretic interpretation of constructive set theory: choice principles. In The L. E. J. Brouwer Centenary Symposium, A. S. Troelstra and D. van Dealen, eds. pp. 1–40. North-Holland, Amsterdam, 1982.

    Chapter  Google Scholar 

  5. T. Baldwin. Interpretations of quantifiers. Mind, 88, 215–240, 1979.

    Article  Google Scholar 

  6. M. Beeson. Recursive models for constructive set theories. Annals Math. Logic, 23, 127–178, 1982.

    Article  Google Scholar 

  7. N. D. Belnap. Tonk, plonk and plink. Analysis, 22, 130–134, 1962.

    Google Scholar 

  8. J. F. A. K. van Benthem and J. van Eijck. The dynamics of interpretation. J. Semantics, 1, 3–20, 1982.

    Article  Google Scholar 

  9. M. R. Cohen and E. Nagel. An Introduction to Logic and Scientific Method, Routledge and Kegan Paul, London, 1934.

    Google Scholar 

  10. D. Davdison. Truth and meaning. Synthese, 17, 304–323, 1967.

    Article  Google Scholar 

  11. D. Davidson. Inquiries into Truth and Interpretation, Oxford University Press, 1984.

    Google Scholar 

  12. M. K. Davies. Meaning, Quantification, Necessity. Routledge and Kegan Paul, London, 1981.

    Google Scholar 

  13. J. Diller. Modified realisation and the formulae-as-types notion. In To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, J. P. Seldin and R. Hindley, eds. pp. 491–502. Academic Press, London, 1980.

    Google Scholar 

  14. J. Diller and A. S. Troelstra. Realisability and intuitionistic logic. Synthese, 60, 153–282, 1984.

    Article  Google Scholar 

  15. M. Dummett. The reality of the past. Proc. Aristot. Soc., 69, 239–258, 1968–69.

    Google Scholar 

  16. M. Dummett. Frege. Duckworth, London, 1973.

    Google Scholar 

  17. M. Dummett. The philosophical basis of intuitionistic logic. In Logic Colloquium ’73, H. E. Rose and J. Shepherdson, eds. pp. 5–40. North-Holland, Amsterdam, 1975.

    Google Scholar 

  18. M. Dummett. The justification of deduction. Proc. British Academy, LIX, 201–321, 1975.

    Google Scholar 

  19. M. Dummett. What is a theory of meaning? (II). [WTM2] In [Evans and McDowell, 1976], pp. 67–137, 1976.

    Google Scholar 

  20. M. Dummett. Elements of Intuitionism, 2nd edition, Oxford University Press, 2000. (First edition 1977.)

    Google Scholar 

  21. M. Dummett. Truth and Other enigmas, [TE], Duckworth, London, 1978.

    Google Scholar 

  22. M. Dummett. Frege and Wittgenstein. In Perspectives on the Philosophy of Wittgenstein, I. Block, ed. pp. 31–42. Blackwell, Oxford, 1981.

    Google Scholar 

  23. M. Dummett. Realism. Synthese, 52, 55–112, 1982.

    Article  Google Scholar 

  24. G. Evans. Pronouns, quantification and relative clauses (I). Canadian J. Phil., reprinted in Platts [1980, pp. 255–317].

    Google Scholar 

  25. G. Evans and J. McDowell, eds. Truth and Meaning. Oxford University Press, 1976.

    Google Scholar 

  26. J. A. Foster. Meaning and truth theory. In [Evans and McDowell, 1976, pp. 1–32].

    Google Scholar 

  27. G. Frege. Grundgesetze der Arithmetik, Jena, 1893.

    Google Scholar 

  28. G. Gentzen. Untersuchungen über das logische Schliessen. Math — eitschrift, 39, 176–210, 405–431, 1934–1935.

    Article  Google Scholar 

  29. I. Hacking. What is logic? J. Philosophy, 76, 285–319, 1979. Reproduced in What is a Logical System?, D. Gabbay, ed. Oxford University Press, 1994.

    Article  Google Scholar 

  30. L. Hallnäs. On Normalization of Proofs in Set Theory, Dissertation, Univeristy of Stockholm, Preprint No. 1, Department of Philosophy, 1983.

    Google Scholar 

  31. W. D. Hart. Prior and Belnap. Theoria, XLVII, 127–138, 1982.

    Google Scholar 

  32. H. E. Hendry. Does IPC have binary indigenous Sheffer function? Notre Dame J. Formal Logic, 22, 183–186, 1981.

    Article  Google Scholar 

  33. A. Heyting. Die intuitionistische Grundlegung der Mathematik. Erkenntnis, 2, 106–115, 1931.

    Article  Google Scholar 

  34. A. Heyting. Intuitionism, North-Holland, Amsterdam, 1956.

    Google Scholar 

  35. A. Heyting. Remarques sur le constructivisme. Logique et Analyse, 3, 177–182, 1960.

    Google Scholar 

  36. S. C. Kleene. Mathematical Logic, John Wiley & Sons, New York, 1967.

    Google Scholar 

  37. G. Kreisel. Foundations of intuitionistic logic. In Logic, Methodology and Philosophy of Science, E. Nagel et al., eds. pp. 198–210. Stanford University Press, 1962.

    Google Scholar 

  38. B. Loar. Two theories of meaning. In [Evans and McDowell, 1976, pp. 138–161].

    Google Scholar 

  39. J. McDowell. Truth conditions, bivalence and verificationism. In [Evans and McDowell, 1976, pp. 42–66].

    Google Scholar 

  40. J. McDowell. On the sense and reference of a proper name. Mind, 86, 159–185, 1977. Also in [Platts, 1980].

    Google Scholar 

  41. J. McDowell. Physicalism and primitive denotation: Field on Tarski. Erkenntnis, 13, 131–152, 1978. Also in [Platts, 1980].

    Google Scholar 

  42. J. McDowell. On ‘The reality of the past’. In Action and Interpretation, C. Hookway and P. Pettit, eds. p. 127–144. Cambridge University Press, 1978.

    Google Scholar 

  43. J. McDowell. Anti-realism and the epistemology of understanding. In Meaning and Understanding, H. Parrett and J. Bouveresse, eds. pp. 225–248. de Gruyter, Berlin, 1981.

    Google Scholar 

  44. C. McGinn. An a priori argument for realism. J. Philosophy, 74, 113–133, 1979.

    Article  Google Scholar 

  45. C. McGinn. Truth and use. In [Platts, 1980, pp. 19–40].

    Google Scholar 

  46. C. McGinn. Realist semantics and content ascription. Synthese, 52, 113–134, 1982.

    Article  Google Scholar 

  47. E. Martin, Jr. Referentiality in Frege’s Grundgesetze. History and Philosophy of Logic, 3, 151–164, 1982.

    Article  Google Scholar 

  48. P. Martin-Löf. An intuitionistic theory of types. In Logic Colloquium ’73, H. E. Rose and J. Shepherdson, eds. pp. 73–118. North-Holland, Amsterdam, 1975.

    Google Scholar 

  49. P. Martin-Löf. Constructive mathematics and computer programming. In Logic, Methodology and Philosophy of Science VI, L. J. Cohen et al., eds. pp. 153–175, North-Holland, Amsterdam, 1982.

    Google Scholar 

  50. P. Martin-Löf. Intuitionistic Type Theory. Notes by Giovanni Sambin of a series of lectures given in Padova, June 1980, Bibliopolis, Naples, 1984.

    Google Scholar 

  51. C. A. B. Peacocke. The theory of meaning in analytical philosophy. In Contemporary Philosophy, vol. 1, G. Flöistad, ed. pp. 35–36. M. Nijhoff, The Hague, 1981.

    Google Scholar 

  52. M. de B. Platts. Ways of Meaning. Routledge and Kegan Paul, London, 1979.

    Google Scholar 

  53. M. de B. Platts. Reference, Truth and Reality. Routledge and Kegan Paul, London, 1980.

    Google Scholar 

  54. D. Prawitz. Natural Deduction. Dissertation, University of Stockholm, 1965.

    Google Scholar 

  55. D. Prawitz. Ideas and results in proof theory. In Proceedings of the Second Scandinavian Logic Symposium, J.-E. Fenstad, ed. pp. 235–308. North-Holland, Amsterdam, 1971.

    Chapter  Google Scholar 

  56. D. Prawitz. Towards a foundation of general proof theory. In Logic, Methdology and Philosophy of Science IV, Suppes et al., eds. pp. 225–250. North-Holland¡ Amsterdam, 1973.

    Google Scholar 

  57. D. Prawitz. Comments on Gentzen-type procedures and the classical notion of truth. In Proof Theory Symposium J. Diller and G. H. Müller, eds. pp. 290–319. Lecture Notes in Mathematics 500, Springer, Berlin, 1975.

    Google Scholar 

  58. D. Prawitz. Meaning and Proofs. Theoria, XLIII, 2–40, 1977.

    Google Scholar 

  59. D. Prawitz. Proofs and the meaning and completeness of the logical constants. In Essays on Mathematical and Philosophical Logic, J. Hintikka et al., eds. pp. 25–40. D. Reidel, Dordrecht, 1978.

    Google Scholar 

  60. D. Prawitz. Intuitionistic logic: a philosophical challenge. In Logic and Philosophy, G. H. von Wright, ed. pp. 1–10. M. Nijhoff, The Hague, 1980.

    Google Scholar 

  61. A. n. Prior. The runabout inference ticket. Analysis, 21, 38–39, 1960.

    Google Scholar 

  62. P. Schroeder-Heister. Untersuchungen zur regellogischen Deutung von Aussagenverknüpfungen. Dissertation, University of Bonn, 1981.

    Google Scholar 

  63. P. Schroeder-Heister. Logische Konstanten und Regeln. Conceputs, 16, 45–60, 1982.

    Google Scholar 

  64. P. Schroeder-Heister. The completeness of intuitionistic logic with respect to a validity concept based on an inversion principle. J. Philosophical Logic, 12, 359–377, 1983.

    Article  Google Scholar 

  65. P. Schroeder-Heister. generalised rules for quantifiers and the completeness of the intuitionistic operators &, ⋁, ⊃, ⊥, ∀, Ǝ. In Computation and Proof Theory, M. Richter, et al., eds. pp. 399–426. Lecture notes in Mathematics, 1104, Springer, Berlin, 1984.

    Chapter  Google Scholar 

  66. R. Smullyan. First Order Logic, Springer-Verlag, Berlin, 1968.

    Book  Google Scholar 

  67. S. Stenlund. The Logic of Description and Existence. Department of Philosophy, University of Uppsala, 1973.

    Google Scholar 

  68. S. Stenlund. Descriptions in intuitionistic logic. In Proceedings of the Third Scandinavian Logic Symposium, S. Kanger, ed. pp. 197–212. North-Holland, Amsterdam, 1975.

    Chapter  Google Scholar 

  69. J. T. Stevenson. Roundabout the runabout inference-ticket. Analysis, 21, 124–128, 1961.

    Google Scholar 

  70. G. Sundholm. Hacking’s logic. J. Philosophy, 78, 160–168, 1981.

    Article  Google Scholar 

  71. G. Sundholm. Constructions, proofs and the meaning of the logical constants. J. Philosophical Logic, 12, 151–172, 1983.

    Article  Google Scholar 

  72. A. Tarski. Logic, Semantics, Metamathematics, Oxford University Press, 1956.

    Google Scholar 

  73. N. Tennant. Natural Logic, Edinburgh University Press, 1978.

    Google Scholar 

  74. N. Tennant. proof and paradox. Dialectica, 36, 265–296, 1982.

    Article  Google Scholar 

  75. C. Thiel. Zur Inkonsistenz der Fregeschen Mengenlehre. In Frege und die moderne Grundlagenfirschung, C. Thiel, ed. pp. 134–159. A. Hain, Meisenheim, 1975.

    Google Scholar 

  76. S. Wagner. Tonk. Notre Dame J. Formal Logic, 22, 289–300, 1981.

    Article  Google Scholar 

  77. C. Wright. Truth conditions and criteria. Proc. Arist. Soc., supp 50, 217–245, 1976.

    Google Scholar 

  78. C. Wright. Wittgenstein on the foundations of Mathematics. Duckworth, London, 1980.

    Google Scholar 

  79. C. Wright. Realism, truth-value links, other minds and the past. Ratio, 22, 112–132, 1980.

    Google Scholar 

  80. C. Wright. Dummett and revisionism. Philosophical Quarterly, 31, 47–67, 1981.

    Article  Google Scholar 

  81. C. Wright. Strict finitism. Synthese, 51, 203–282, 1982.

    Article  Google Scholar 

  82. J. Zucker and R. S. Tragresser. The adequacy problem for inferential logic. J. Philosophical Logic, 7, 501–516, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sundholm, G. (2002). Proof Theory and Meaning. In: Gabbay, D.M., Guenthner, F. (eds) Handbook of Philosophical Logic. Handbook of Philosophical Logic, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0464-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0464-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6055-6

  • Online ISBN: 978-94-017-0464-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics