Abstract
One way to define a logic is to specify a language and a deductive system. For example, the language of first-order logic consists of the syntactic categories of terms and formulae, and its deductive system establishes which formulae are theorems. Typically we have a specific language in mind for a logic, but some flexibility about the kind of deductive system we use; we are able to select from, e.g., a Hilbert calculus, a sequent calculus, or a natural deduction calculus. A logical framework is an abstract characterization of one of these kinds of deductive system that we can use to formalize particular examples. Thus a logical framework for natural deduction should allow us to formalize natural deduction for a wide range of logics from, e.g., propositional logic to intuitionistic type-theories or classical higher-order logic.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Bibliography
Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit substitutions. J. Functional Programming, 1:375–416, 1991.
Peter Aczel. An introduction to inductive definitions. In Jon Barwise, editor, Handbook of Mathematical Logic. North-Holland, Amsterdam, 1977.
Arnon Avron, Furio Honsell, Ian Mason, and Robert Pollack. Using typed lambda calculus to implement formal systems on a machine. J. Auto. Reas., 9:309–352, 1992.
Arnon Avron, Furio Honsell, Marino Miculan, and Cristian Paravano. Encoding modal logics in logical frameworks. Studia Logica, 60(1):161–208, 1998.
Arnon Avron. Gentzenizing Shroeder-Heister’s natural extension of natural deduction. Notre Dame Journal of Formal Logic, 31:127–135, 1990.
Arnon Avron. Simple consequence relations. Inform. and Comput., 92:105–139, 1991.
Arnon Avron. Axiomatic systems, deduction and implication. J. Logic Computat., 2:51–98, 1992.
Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, Amsterdam, 2nd (revised) edition, 1984.
Henk Barendregt. Introduction to generalized type sytems. J. Functional Programming, 2:125–154, 1991.
Henk Barendregt. Lambda calculi with types. In Samson Abramsky, Dov Gabbay, and Tom S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2. Oxford University Press, 1992.
David Basin and Sean Matthews. Structuring metatheory on inductive definitions. Information and Computation, 162(1–2), October/November 2000.
David Basin, Seán Matthews, and Luca Viganò. Labelled propositional modal logics: theory and practice. J. Logic Computat., 7:685–717, 1997.
David Basin, Seán Matthews, and Luca Viganò. A new method for bounding the complexity of modal logics. In Georg Gottlob, Alexander Leitsch, and Daniele Mundici, editors, Proc. Kurt Gödel Colloquium, 1997, pages 89–102. Springer, Berlin, 1997.
David Basin, Seán Matthews, and Luca Viganò. Labelled modal logics: Quantifiers. J. Logic, Language and Information, 7:237–263, 1998.
David Basin, Seán Matthews, and Luca Viganò. Natural deduction for nonclassical logics. Studia Logica, 60(1):119–160, 1998.
George Boolos. The Logic of Provability. Cambridge University Press, 1993.
Robert Boyer and J. Strother Moore. A Computational Logic. Academic Press, New York, 1981.
Robert Bull and Krister Segerberg. Basic modal logic. In Gabbay and Guenthner [1983–89], chapter II.1.
Iliano Cervesato and Frank Pfenning. A linear logical framework. In 11th Ann. Symp. Logic in Comp. Sci. IEEE Computer Society Press, 1996.
Alonzo Church. A formulation of the simple theory of types. J. Symbolic Logic, 5:56–68, 1940.
Martin Davis. Emil Post’s contributions to computer science. In Proc. 4th IEEE Ann. Symp. Logic in Comp. Sci. IEEE Computer Society Press, 1989.
Nicolas G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae, 34:381–392, 1972.
Nicolas G. de Bruijn. A survey of the project Automath. In J. R. Hindley and J. P. Seldin, editors, To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism, pages 579–606. Academic Press, New York, 1980.
Joëlle Despeyroux, Frank Pfenning, and Carsten Schürmann. Primitive recursion for higher-order abstract syntax. Technical Report CMU-CS-96–172, Dept. of Computer Science, Carnegie Mellon University, September 1996.
Michael Dummett. The philosophical basis of intuitionistic logic. In Truth and other enigmas, pages 215–247. Duckworth, London, 1978.
Ronald Fagin, Joseph Y. Halpern, and Moshe Y. Vardi. What is an inference rule? J. Symbolic Logic, 57:1018–1045, 1992.
Solomon Feferman. Finitary inductive systems. In Logic Colloquium ’88, pages 191–220. North-Holland, Amsterdam, 1990.
Amy Felty. Specifying and Implementing Theorem Provers in a Higher Order Programming Language. PhD thesis, University of Pennsylvania, 1989.
Amy Felty. Encoding dependent types in an intuitionistic logic. In Huet and Plotkin [1991].
Dov Gabbay and Franz Guenthner, editors. Handbook of Philosophical Logic, vol. I–IV. Reidel, Dordrecht, 1983–89.
Dov Gabbay. Labelled Deductive Systems, vol. 1. Clarendon Press, Oxford, 1996.
Philippa Gardner. Equivalences between logics and their representing type theories. Math. Struct. in Comp. Science, 5:323–349, 1995.
Gerhard Gentzen. Untersuchen über das logische Schließen. Math. Z., 39:179–210, 405–431, 1934.
Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatsh. Math., 38:173–198, 1931.
Joseph A. Goguen and Rod M. Burstall. Institutions: Abstract model theory for specifications and programming. J. Assoc. Comput. Mach., pages 95–146, 1992.
Michael J. Gordon and Tom Melham. Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press, Cambridge, 1993.
Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF: A Mechanized Logic of Computation. Springer, Berlin, 1979.
Ralph E. Griswold. A history of the Snobol programming languages. In Wexelblat [1981], pages 601–660.
Ian Hacking. What is logic? J. Philosophy, 76(6), 1979.
Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. J. Assoc. Comput. Mach., 40:143–184, 1993.
J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and A-Calculus. Cambridge University Press, Cambridge, 1986.
William Howard. The formulas-as-types notion of construction. In J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda-Calculus, and Formalism. Academic Press, New York, 1980.
Gérard Huet and Gordon Plotkin, editors. Logical Frameworks. Cambridge University Press, Cambridge, 1991.
Samin Ishtiaq and David Pym. A relevant analysis of natural deduction. J. Logic Computat., 8:809–838, 1998.
Stephen C. Kleene. Introduction to Metamathematics. North-Holland, Amsterdam, 1952.
Saul A. Kripke. Semantical analysis of modal logic I: normal propositional modal logic. Z. Math. Logik Grundlag. Math, 8:67–96, 1963.
Narciso Martí-Oliet and José Meseguer. Rewriting logic as a logical and semantic framework. In Handbook of Philosophical Logic. second edition, 2002.
Seán Matthews, Alan Smaill, and David Basin. Experience with FS0 as a framework theory. In Gérard Huet and Gordon Plotkin, editors, Logical Environments. Cambridge University Press, Cambridge, 1993.
Seán Matthews. Metatheoretic and Reflexive Reasoning in Mechanical Theorem Proving. PhD thesis, University of Edinburgh, 1992.
Seán Matthews. A theory and its metatheory in FS0. In Dov Gabbay, editor, What is a Logical System? Clarendon Press, Oxford, 1994.
Seán Matthews. Implementing FS0 in Isabelle: adding structure at the metalevel. In Jacques Calmet and Carla Limongelli, editors, Proc. Disco’96. Springer, Berlin, 1996.
Seán Matthews. Extending a logical framework with a modal connective for validity. In Martín Abadi and Takayasu Ito, editors, Proc. TACS’97. Springer, Berlin, 1997.
Seán Matthews. A practical implementation of simple consequence relations using inductive definitions. In William McCune, editor, Proc. CADE-14. Springer, Berlin, 1997.
John McCarthy. History of Lisp. In Wexelblat [1981], pages 173–197.
Raymond McDowell and Dale Miller. A logic for reasoning with higher-order abstract syntax. In Proc. 12th IEEE Ann. Symp. Logic in Comp. Sci., pages 434–416. IEEE Computer Society Press, 1997.
José Meseguer. General logics. In Heinz-Dieter Ebbinghaus, J. Fernandez-Prida, M. Garrido, D. Lascar, and M. Rodriguez Artalejo, editors, Logic Colloquium, ’87, pages 275–329. North-Holland, 1989.
Rob P. Nederpelt, Herman J. Geuvers, and Roel C. de Vrijer, editors. Selected papers on Automath. Elsevier, Amsterdam, 1994.
Hans-Jürgen Ohlbach. Translation methods for non-classical logics: an overview. Bulletin of the IGPL, 1:69–89, 1993.
Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal verification for fault-tolerant architectures: Prolegomena to the design of PVS. IEEE Trans. Software Eng., 21:107–125, 1995.
Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer, Berlin, 1994.
Frank Pfenning. The practice of logical frameworks. In Helene Kirchner, editor, Proc. CAAP’96. Springer, Berlin, 1996.
Frank Pfenning. Structural cut elimination I. intuitionistic and classical logic. Information and Computation, 157(1–2), March 2000.
Randy Pollack. The Theory of LEGO: A Proof Checker for the Extended Calculus of Constructions. PhD thesis, University of Edinburgh, 1994.
Emil Post. Formal reductions of the general combinatorial decision problem. Amer. J. Math., 65:197–214, 1943.
Dag Prawitz. Natural Deduction. Almqvist and Wiksell, Stockholm, 1965.
Dag Prawitz. Ideas and results in proof theory. In J. E. Fensted, editor, Proc. Second Scandinavian Logic Symp., pages 235–307. North-Holland, Amsterdam, 1971.
David J. Pym and Lincoln Wallen. Proof-search in the λΠ-calculus. In Huet and Plotkin [1991], pages 309–340.
Peter Schroeder-Heister. Generalised rules for quantifiers and the completeness of the intuitionistic operators &, ⋁, ⊃, ⊥, ∀, Ǝ. In M. M. Richter et al., editors, Computation and proof theory. Springer, Berlin, 1984.
Peter Schroeder-Heister. A natural extension of natural deduction. J. Symbolic Logic, 49:1284–1300, 1984.
Dana Scott. Rules and derived rules. In S. Stenlund, editor, Logical Theory and Semantical Analysis, pages 147–161. Reidel, Dordrecht, 1974.
Alex K. Simpson. Kripke semantics for a logical framework. In Proc. Workshop on Types for Proofs and Programs, Båstad, 1992.
Raymond Smullyan. Theory of Formal Systems. Princeton University Press, 1961.
Guy L. Steele Jr. and Richard P. Gabriel. The evolution of Lisp. In Thomas J. Bergin and Richard G. Gibson, editors, History of Programming Languages, pages 233–330. ACM Press, New York, 1996.
Göran Sundholm. Systems of deduction. In Gabbay and Guenthner [1983–89], chapter I.2.
Göran Sundholm. Proof theory and meaning. In Gabbay and Guenthner [1983–89], chapter III.8.
Carolyn Talcott. A theory of binding structures, and applications to rewriting. Theoret. Comp. Sci., 112:99–143, 1993.
A. S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. Springer, Berlin, 1982.
Johan van Benthem. Correspondence theory. In Gabbay and Guenthner [1983–89], chapter II.4.
Richard L. Wexelblat, editor. History of Programming Languages. Academic Press, New York, 1981.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Basin, D., Matthews, S. (2002). Logical Frameworks. In: Gabbay, D.M., Guenthner, F. (eds) Handbook of Philosophical Logic. Handbook of Philosophical Logic, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0464-9_2
Download citation
DOI: https://doi.org/10.1007/978-94-017-0464-9_2
Publisher Name: Springer, Dordrecht
Print ISBN: 978-90-481-6055-6
Online ISBN: 978-94-017-0464-9
eBook Packages: Springer Book Archive