Skip to main content

Quantum Logics

  • Chapter

Part of the Handbook of Philosophical Logic book series (HALO,volume 6)

Abstract

The official birth of quantum logic is represented by a famous article of Birkhoff and von Neumann “The logic of quantum mechanics” [Birkhoff and von Neumann, 1936]. At the very beginning of their paper, Birkhoff and von Neumann observe:

One of the aspects of quantum theory which has attracted the most general attention, is the novelty of the logical notions which it presupposes .... The object of the present paper is to discover what logical structures one may hope to find in physical theories which, like quantum mechanics, do not conform to classical logic.

Keywords

  • Classical Logic
  • Effect Algebra
  • Quantum Logic
  • Accessibility Relation
  • Intuitionistic Logic

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-017-0460-1_2
  • Chapter length: 100 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-94-017-0460-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. G. Battilotti. Embedding classical logic into basic orthologic with a primitive modality, Logic Journal of the IGPL, 6, 383–402, 1998.

    CrossRef  Google Scholar 

  2. G. Battilotti and G. Sambin. Basic logic and the cube of its extensions, in A. Cantini, E. Casari, and P. Minari (eds), Logic and Foundations of Mathematics, pp. 165–186. Kluwer, Dordrecht, 1999.

    Google Scholar 

  3. J. L. Bell and A. B. Slomson. Models and Ultraproducts: An Introduction, North-Holland, Amsterdam, 1969.

    Google Scholar 

  4. E. Beltrametti and G. Cassinelli. The Logic of Quantum Mechanics, Vol. 15 of Encyclopedia of Mathematics and its Applications, Addison-Wesley, Reading, 1981.

    Google Scholar 

  5. G. Birkhoff. Lattice Theory, Vol. 25 of Colloquium Publications, 38 edn, American Mathematical Society, Providence, 1995.

    Google Scholar 

  6. G. Birkhoff and J. von Neumann. The logic of quantum mechanics, Annals of Mathematics 37, 823–843, 1936.

    Google Scholar 

  7. G. Cattaneo and F. Laudisa. Axiomatic unsharp quantum mechanics, Foundations of Physics 24, 631–684, 1984.

    CrossRef  Google Scholar 

  8. G. Cattaneo and G. Nisticò. Brouwer—Zadeh posets and three-valued Lukasiewicz posets, Fuzzy Sets and Systems 33, 165–190, 1986.

    Google Scholar 

  9. C. C. Chang. Algebraic analysis of many valued logics, Transactions of the American Mathematical Society 88, 74–80. 1957.

    Google Scholar 

  10. C. C. Chang. A new proof of the completeness of Lukasiewicz axioms, Transactions of the American Mathematical Society 93, 467–490, 1958.

    CrossRef  Google Scholar 

  11. M. L. Dalla Chiara. Some metalogical pathologies of quantum logic, in E. Beltrametti and B. V. Fraassen (eds), Current Issues in Quantum Logic, Vol. 8 of Ettore Majorana International Science Series, Plenum, New York, pp. 147–159, 1981.

    CrossRef  Google Scholar 

  12. N. Cutland and P. Gibbins. A regular sequent calculus for quantum logic in which A and V are dual, Logique et Analyse–Nouvelle Serie - 25 (45), 221–248, 1982.

    Google Scholar 

  13. N. C. A. da Costa, S. French and D. Krause. The Schrödinger problem, in M. Bibtol and O. Darrigol (eds), Erwin Schrödinger: Philosophy and the Birth of Quantum Mechanics, Editions Frontières, pp. 445–460, 1992.

    Google Scholar 

  14. M. L. Dalla Chiara and R. Giuntini. Unsharp quantum logics, Foundations of Physics 24, 1161–1177, 1994.

    CrossRef  Google Scholar 

  15. M. L. Dalla Chiara and R. Giuntini. The logics of orthoalgebras, Studia Logica 55, 3–22, 1995.

    CrossRef  Google Scholar 

  16. M. L. Dalla Chiara and G. Toraldo di Francia. Individuals, kinds and names in physics, in G. Corsi, M. L. Dalla Chiara and G. Ghirardi (eds), Bridging the Gap: Philosophy, Mathematics, and Physics, Kluwer Academic Publisher, Dordrecht, pp. 261–283, 1993.

    CrossRef  Google Scholar 

  17. E. B. Davies.Quantum Theory of Open SystemsAcademic, New York, 1976

    Google Scholar 

  18. H. Dishkant. Semantics of the minimal logic of quantum mechanics, Studia Logica 30, 17–29, 1972.

    Google Scholar 

  19. M. Dummett. Introduction to quantum logic, unpublished, 1976.

    Google Scholar 

  20. A. Dvurecenskij and S. Pulmannovâ. D-test spaces and difference poset, Reports on Mathematical Physics 34, 151–170, 1994.

    CrossRef  Google Scholar 

  21. C. Faggian. Classical proofs via basic logic, in Proceedings of CSL ‘87, pp. 203–219. Lectures Notes in Computer Science 1414,Springer, Berlin, 1997.

    Google Scholar 

  22. C Faggian and G. Sambin. From basic logic to quantum logics with cut elimination, International Journal of Theoretical Physics 12, 1997.

    Google Scholar 

  23. P. D. Finch. Quantum logic as an implication algebra, Bulletin of the Australian Mathematical Society 2, 101–106, 1970.

    CrossRef  Google Scholar 

  24. D. J. Foulis and M. K. Bennett. Effect algebras and unsharp quantum logics, Foundations of Physics 24, 1325–1346, 1994.

    CrossRef  Google Scholar 

  25. P. Gibbins. A user-friendly quantum logic, Logique-et-Analyse.- Nouvelle-Serie 28, 353–362, 1985.

    Google Scholar 

  26. P. Gibbins. Particles and Paradoxes - The Limits of Quantum Logic, Cambridge University Press, Cambridge, 1987.

    CrossRef  Google Scholar 

  27. J. Y. Girard. Liner logic, Theoretical Computer Science 50, 1–102, 1987.

    CrossRef  Google Scholar 

  28. R. Giuntini. A semantical investigation on Brouwer-Zadeh logic, Journal of Philosophical Logic 20, 411–433, 1991.

    CrossRef  Google Scholar 

  29. R. Giuntini. Brouwer-Zadeh logic, decidability and bimodal systems, Studia Logica 51, 97–112, 1992.

    CrossRef  Google Scholar 

  30. R. Giuntini. Three-valued Brouwer-Zadeh logic, International Journal of Theoretical Physics 32, 1875–1887, 1993.

    CrossRef  Google Scholar 

  31. R. Giuntini. Quasilinear QMV algebras, International Journal of Theoretical Physics 34, 1397–1407, 1995.

    CrossRef  Google Scholar 

  32. R. Giuntini. Quantum MV algebras, Studia Logica 56, 393–417, 1996.

    CrossRef  Google Scholar 

  33. R. H. Goldblatt. Orthomodularity is not elementary, Journal of Symbolic Logic 49, 401–404, 1984.

    CrossRef  Google Scholar 

  34. R. Goldblatt. Semantics analysis of orthologic, Journal of Philosophical Logic 3, 19–35, 1974.

    CrossRef  Google Scholar 

  35. R. J. Greechie. A non-standard quantum logic with a strong set of states, in E. G. Beltrametti and B. C. van Fraassen (eds), Current Issues in Quantum Logic, Vol. 8 of Ettore Majorana International Science Series, Plenum, New York, pp. 375–380, 1981.

    CrossRef  Google Scholar 

  36. R. J. Greechie and S. P. Gudder. Effect algebra counterexamples, preprint, n. d.

    Google Scholar 

  37. S. P. Gudder. Total extensions of effect algebras, Foundations of Physics Letters 8, 243–252, 1995.

    CrossRef  Google Scholar 

  38. G. H. Hardegree. Stalnaker conditionals and quantum logic, Journal of Philosophical Logic 4, 399–421, 1975.

    CrossRef  Google Scholar 

  39. G. M. Hardegree. The conditional in quantum logic, in P. Suppes (ed.), Logic and Probability in Quantum Mechanics, Reidel, Dordrecht, pp. 55–72, 1976.

    Google Scholar 

  40. G. Kalmbach. Orthomodular Lattices, Academic Press, New York, 1983.

    Google Scholar 

  41. H. A. Keller. Ein nichtklassischer Hilbertscher Raum, Mathematische Zeitschrift 172, 41–49, 1980.

    CrossRef  Google Scholar 

  42. F. Kôpka and F. Chovanec. D-posets, Mathematica Slovaca 44, 21–34, 1994.

    Google Scholar 

  43. K. Kraus. States, Effects and Operations, Vol. 190 of Lecture Notes in Physics, Springer, Berlin, 1983.

    Google Scholar 

  44. G. Ludwig. Foundations of Quantum Mechanics, Vol. 1, Springer, Berlin, 1983.

    CrossRef  Google Scholar 

  45. G. Mackey. The Mathematical Foundations of Quantum Mechanics, Benjamin, New York, 1957.

    Google Scholar 

  46. P. Mangani. Su certe algebre connesse con logiche a più valori, Bollettino Unione Matematica Italiana 8, 68–78, 1973.

    Google Scholar 

  47. P. Minari. On the algebraic and Kripkean logical consequence relation for orthomodular quantum logic, Reports on Mathematical Logic 21, 47–54, 1987.

    Google Scholar 

  48. P. Mittelstaedt. On the interpretation of the lattice of subspaces of Hilbert space as a propositional calculus, Zeitschrift für Naturforschung 27a, 1358–1362, 1972.

    Google Scholar 

  49. R. P. Morash. Angle bisection and orthoautomorphisms in Hilbert lattices, Canadian Journal of Mathematics 25, 261–272, 1973.

    Google Scholar 

  50. H. Nishimura. Sequential method in quantum logic, Journal of Symbolic Logic 45, 339–352, 1980.

    CrossRef  Google Scholar 

  51. H. Nishimura. Proof theory for minimal quantum logic I and II, In-ternational Journal of Theoretical Physics 33, 102–113, 1427–1443, 1994.

    Google Scholar 

  52. V. Pratt. Linear logic for generalized quantum mechanics. In Proceeings of the Worksho on Physics and Computation, pp. 166–180, IEEE, 1993.

    Google Scholar 

  53. P. Ptak and S. Pulmannovâ. Orthomodular Structures as Quantum Logics, number 44 in Fundamental Theories of Physics, Kluwer, Dordrecht, 1991.

    Google Scholar 

  54. H. Putnam. Is logic empirical?, Vol. 5 of Boston Studies in the Philosophy of Science, Reidel, Dordrecht, pp. 216–241, 1969.

    Google Scholar 

  55. G. Sambin. A new elementary method to represent every complete Boolean algebra, in A. Ursini, and P. Aglianò (eds), Logic and Algebra, Marcel Dekker, New York, pp. 655–665, 1996.

    Google Scholar 

  56. G. Sambin, G. Battilotti and C. Faggian. Basic logic: reflection, symmetry, visibility, The Journal of Symbolic Logic,to appear.

    Google Scholar 

  57. M. P. Solèr. Characterization of Hilbert space by orthomodular spaces, Communications in Algebra, 23, 219–243, 1995.

    CrossRef  Google Scholar 

  58. G. Takeuti. Quantum set theory, in E. G. Beltrametti and B. C. van Fraassen (eds), Current Issues in Quantum Logic, Vol. 8 of Ettore Majorana International Science Series, Plenum, New York, pp. 303–322, 1981.

    CrossRef  Google Scholar 

  59. S. Tamura. A Gentzen formulation without the cut rule for ortholattices, Kobe Journal of Mathematics 5, 133–150, 1988.

    Google Scholar 

  60. V. S. Varadarajan. Geometry of Quantum Theory, 2 edn, Springer, Berlin, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chiara, M.L.D., Giuntini, R. (2002). Quantum Logics. In: Gabbay, D.M., Guenthner, F. (eds) Handbook of Philosophical Logic. Handbook of Philosophical Logic, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0460-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0460-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6004-4

  • Online ISBN: 978-94-017-0460-1

  • eBook Packages: Springer Book Archive