Advertisement

Dynamic Logic

  • David Harel
  • Dexter Kozen
  • Jerzy Tiuryn
Part of the Handbook of Philosophical Logic book series (HALO, volume 4)

Abstract

Dynamic Logic (DL) is a formal system for reasoning about programs. Traditionally, this has meant formalizing correctness specifications and proving rigorously that those specifications are met by a particular program. Other activities fall into this category as well: determining the equivalence of programs, comparing the expressive power of various programming constructs, synthesizing programs from specifications, etc. Formal systems too numerous to mention have been proposed for these purposes, each with its own peculiarities.

Keywords

Expressive Power Axiom System Atomic Proposition Dynamic Logic Kripke Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [Abrahamson, 1980]
    K. Abrahamson. Decidability and expressiveness of logics of processes. PhD thesis, Univ. of Washington, 1980.Google Scholar
  2. [Adian, 1979]
    S. I. Adian. The Burnside Problem and Identities in Groups. Springer-Verlag, 1979.CrossRefGoogle Scholar
  3. [Aho et al., 1975]
    A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, Mass., 1975.Google Scholar
  4. [Ambler et al., 1995]
    S. Ambler, M. Kwiatkowska, and N. Measor. Duality and the completeness of the modal μ-calculus. Theor. Comput. Sci., 151(1):3–27, November 1995.CrossRefGoogle Scholar
  5. [Andréka et al., 1982a]
    H. Andréka, I. Németi, and I. Sain. A complete logic for reasoning about programs via nonstandard model theory, part I. Theor. Comput. Sci., 17:193–212, 1982.CrossRefGoogle Scholar
  6. [Andréka et al., 1982b]
    H. Andréka, I. Németi, and I. Sain. A complete logic for reasoning about programs via nonstandard model theory, part II. Theor. Comput. Sci., 17:259–278, 1982.CrossRefGoogle Scholar
  7. [Apt and Olderog, 1991]
    K. R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Programs. Springer-Verlag, 1991.CrossRefGoogle Scholar
  8. [Apt and Plotkin, 1986]
    K. R. Apt and G. Plotkin. Countable nondeterminism and random assignment. J. Assoc. Comput. Mach., 33:724–767, 1986.CrossRefGoogle Scholar
  9. [Apt, 1981]
    K. R. Apt. Ten years of Hoare’s logic: a survey—part I. ACM Trans. Programming Languages and Systems, 3:431–483, 1981.CrossRefGoogle Scholar
  10. [Archangelsky, 1992]
    K. V. Archangelsky. A new finite complete solvable quasiequational calculus for algebra of regular languages. Manuscript, Kiev State University, 1992.Google Scholar
  11. [Arnold, 1997a]
    A. Arnold. An initial semantics for the μ-calculus on trees and Rabin’s complementation lemma. Technical report, University of Bordeaux, 1997.Google Scholar
  12. [Arnold, 1997b]
    A. Arnold. The μ-calculus on trees and Rabin’s complementation theorem. Technical report, University of Bordeaux, 1997.Google Scholar
  13. [Backhouse, 1975]
    R. C. Backhouse. Closure Algorithms and the Star-Height Problem of Regular Languages. PhD thesis, Imperial College, London, U.K., 1975.Google Scholar
  14. [Backhouse, 1986]
    R. C. Backhouse. Program Construction and Verification. Prentice-Hall, 1986.Google Scholar
  15. [Baier and Kwiatkowska, 1998]
    C. Baier and M. Kwiatkowska. On the verification of qualitative properties of probabilistic processes under fairness constraints. Information Processing Letters, 66(2):71–79, April 1998.CrossRefGoogle Scholar
  16. [Banachowski et al., 1977]
    L. Banachowski, A. Kreczmar, G. Mirkowska, H. Rasiowa, and A. Salwicki. An introduction to algorithmic logic: metamathematical investigations in the theory of programs. In Mazurkiewitz and Pawlak, editors, Math. Found. Comput. Sci., pages 7–99. Banach Center, Warsaw, 1977.Google Scholar
  17. [Ben-Ari et al., 1982]
    M. Ben-Ari, J. Y. Halpern, and A. Pnueli. Deterministic propositional dynamic logic: finite models, complexity and completeness. J. Comput. Syst. Sci., 25:402–417, 1982.CrossRefGoogle Scholar
  18. [Berman and Paterson, 1981]
    F. Berman and M. Paterson. Propositional dynamic logic is weaker without tests. Theor. Comput. Sci., 16:321–328, 1981.CrossRefGoogle Scholar
  19. [Berman et al., 1982]
    P. Berman, J. Y. Halpern, and J. Tiuryn. On the power of non-determinism in dynamic logic. In Nielsen and Schmidt, editors, Proc 9th Colloq. Automata Lang. Prog., volume 140 of Lect. Notes in Comput. Sci., pages 48–60. Springer-Verlag, 1982.Google Scholar
  20. [Berman, 1978]
    F. Berman. Expressiveness hierarchy for PDL with rich tests. Technical Report 78–11–01, Comput. Sci. Dept., Univ. of Washington, 1978.Google Scholar
  21. [Berman, 1979]
    F. Berman. A completeness technique for D-axiomatizable semantics. In Proc. 11th Symp. Theory of Comput., pages 160–166. ACM, 1979.Google Scholar
  22. [Berman, 1982]
    F. Berman. Semantics of looping programs in propositional dynamic logic. Math. Syst. Theory, 15:285–294, 1982.CrossRefGoogle Scholar
  23. [Bhat and Cleaveland, 1996]
    G. Bhat and R. Cleaveland. Efficient local model checking for fragments of the modal μ-calculus. In T. Margaria and B. Steffen, editors, Proc. Second Int. Workshop Tools and Algorithms for the Construction and Analysis of Systems (TACAS’96), volume 1055 of Lect. Notes in Comput. Sci., pages 107–112. Springer-Verlag, March 1996.CrossRefGoogle Scholar
  24. [Bloom and Esik, 1992]
    S. L. Bloom and Z. Esik. Program correctness and matricial iteration theories. In Proc. 7th Int. Conf. Mathematical Foundations of Programming Semantics, volume 598 of Lecture Notes in Computer Science, pages 457–476. Springer-Verlag, 1992.CrossRefGoogle Scholar
  25. [Bloom and Esik, 1993]
    S. L. Bloom and Z. Esik. Equational axioms for regular sets. Math. Struct. Comput. Sci., 3:1–24, 1993.CrossRefGoogle Scholar
  26. [Blute et al, 1997]
    R. Blute, J. Desharnais, A. Edelat, and P. Panangaden. Bisimulation for labeled Markov processes. In Proc. 12th Symp. Logic in Comput. Sci., pages 149–158. IEEE, 1997.Google Scholar
  27. [Boffa, 1990]
    M. Boffa. Une remarque sur les systèmes complets d’identités rationnelles. Informatique Théoretique et Applications/Theoretical Informatics and Applications, 24(4):419–423, 1990.Google Scholar
  28. [Boffa, 1995]
    Maurice Boffa. Une condition impliquant toutes les identités rationnelles. Informatique Théoretique et Applications/Theoretical Informatics and Applications, 29(6):515–518, 1995.Google Scholar
  29. [Bonsangue and Kwiatkowska, 1995]
    M. Bonsangue and M. Kwiatkowska. Reinterpreting the modal μ-calculus. In A. Ponse, M. de Rijke, and Y. Venema, editors, Modal Logic and Process Algebra, pages 65–83. CSLI Lecture Notes, August 1995.Google Scholar
  30. [Börger, 1984]
    E. Börger. Spectralproblem and completeness of logical decision problems. In G. Hasenjaeger, E. Borger and D. Rödding, editors, Logic and Machines: Decision Problems and Complexity, Proceedings, volume 171 of Lect. Notes in Comput. Sci., pages 333–356. Springer-Verlag, 1984.CrossRefGoogle Scholar
  31. [Bradfield, 1996]
    J. C. Bradfield. The modal μ-calculus alternation hierarchy is strict. In U. Montanari and V. Sassone, editors, Proc. CONCUR’96, volume 1119 of Lect. Notes in Comput. Sci., pages 233–246. Springer, 1996.Google Scholar
  32. [Burstall, 1974]
    R. M. Burstall. Program proving as hand simulation with a little induction. Information Processing, pages 308–312, 1974.Google Scholar
  33. [Chandra et al., 1981]
    A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. J. Assoc. Comput. Mach., 28(1):114–133, 1981.CrossRefGoogle Scholar
  34. [Chellas, 1980]
    B. F. Chellas. Modal Logic: An Introduction. Cambridge University Press, 1980.CrossRefGoogle Scholar
  35. [Clarke, 1979]
    E. M. Clarke. Programming language constructs for which it is impossible to obtain good Hoare axiom systems. J. Assoc. Comput. Mach., 26:129–147, 1979.CrossRefGoogle Scholar
  36. [Cleaveland, 1996]
    R. Cleaveland. Efficient model checking via the equational μ-calculus. In Proc. 11th Symp. Logic in Comput. Sci., pages 304–312. IEEE, July 1996.Google Scholar
  37. [Cohen et al., 1996]
    Ernie Cohen, Dexter Kozen, and Frederick Smith. The complexity of Kleene algebra with tests. Technical Report 96–1598, Computer Science Department, Cornell University, July 1996.Google Scholar
  38. [Cohen, 1994a]
    E. Cohen. Hypotheses in Kleene algebra. Available as ftp://ftp.telcordia.com/pub/ernie/research/homepage.html, April 1994.Google Scholar
  39. [Cohen, 1994b]
  40. [Cohen, 1994c]
    E. Cohen. Using Kleene algebra to reason about concurrency control. Available as ftp://ftp.telcordia.com/pub/ernie/research/homepage.html, 1994.Google Scholar
  41. [Constable and O’Donnell, 1978]
    R. L. Constable and M. O’Donnell. A Programming Logic. Winthrop, 1978.Google Scholar
  42. [Constable, 1977]
    R. L. Constable. On the theory of programming logics. In Proc. 9th Symp. Theory of Comput., pages 269–285. ACM, May 1977.Google Scholar
  43. [Conway, 1971]
    J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, London, 1971.Google Scholar
  44. [Cook, 1978]
    S. A. Cook. Soundness and completeness of an axiom system for program verification. SIAM J. Comput., 7:70–80, 1978.CrossRefGoogle Scholar
  45. [Courcoubetis and Yannakakis, 1988]
    C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite-state probabilistic programs. In Proc. 29th Symp. Foundations of Comput Sci., pages 338–345. IEEE, October 1988.Google Scholar
  46. [Cousot, 1990]
    P. Cousot. Methods and logics for proving programs. In J. van Leeuwen, editor, Handbood of Theoretical Computer Science, volume B, pages 841–993. Elsevier, Amsterdam, 1990.Google Scholar
  47. [Csirmaz, 1985]
    L. Csirmaz. A completeness theorem for dynamic logic. Notre Dame J. Formal Logic, 26:51–60, 1985.CrossRefGoogle Scholar
  48. [Davis et al., 1994]
    M. D. Davis, R. Sigal, and E. J. Weyuker. Computability. Complexity, and Languages: Fundamentals of Theoretical Computer Science. Academic Press, 1994.Google Scholar
  49. [de Bakker, 1980]
    J. de Bakker. Mathematical Theory of Program Correctness. Prentice-Hall, 1980.Google Scholar
  50. [Emerson and Halpern, 1985]
    E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the temporal logic of branching time. J. Comput. Syst. Sci., 30(1):1–24, 1985.CrossRefGoogle Scholar
  51. [Emerson and Halpern, 1986]
    E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: on branching vs. linear time temporal logic. J. ACM, 33(1):151–178, 1986.CrossRefGoogle Scholar
  52. [Emerson and Jutla, 1988]
    E. A. Emerson and C. Jutla. The complexity of tree automata and logics of programs. In Proc. 29th Symp. Foundations of Comput. Sci., pages 328–337. IEEE, October 1988.Google Scholar
  53. [Emerson and Jutla, 1989]
    E. A. Emerson and C. Jutla. On simultaneously determinizing and complementing ω-automata. In Proc. 4th Symp. Logic in Comput. Sci. IEEE, June 1989.Google Scholar
  54. [Emerson and Lei, 1986]
    E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional μ-calculus. In Proc. 1st Symp. Logic in Comput. Sci., pages 267–278. IEEE, June 1986.Google Scholar
  55. [Emerson and Lei, 1987]
    E. A. Emerson and C. L. Lei. Modalities for model checking: branching time strikes back. Sci. Comput. Programming, 8:275–306, 1987.CrossRefGoogle Scholar
  56. [Emerson and Sistla, 1984]
    E. A. Emerson and P. A. Sistla. Deciding full branching-time logic. Infor. and Control, 61:175–201, 1984.CrossRefGoogle Scholar
  57. [Emerson, 1985]
    E. A. Emerson. Automata, tableax, and temporal logics. In R. Parikh, editor, Proc. Workshop on Logics of Programs, volume 193 of Lect. Notes in Comput. Sci., pages 79–88. Springer-Verlag, 1985.CrossRefGoogle Scholar
  58. [Emerson, 1990]
    E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of theoretical computer science, volume B: formal models and semantics, pages 995–1072. Elsevier, 1990.Google Scholar
  59. [Engeler, 1967]
    E. Engeler. Algorithmic properties of structures. Math. Syst. Theory, 1:183–195, 1967.CrossRefGoogle Scholar
  60. [Engelfriet, 1983]
    J. Engelfriet. Iterated pushdown automata and complexity classes. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pages 365–373, Boston, Massachusetts, 1983.CrossRefGoogle Scholar
  61. [Erimbetov, 1981]
    M. M. Erimbetov. On the expressive power of programming logics. In Proc. Alma-Ata Conf. Research in Theoretical Programming, pages 49–68, 1981. In Russian.Google Scholar
  62. [Feldman and Harel, 1984]
    Y. A. Feldman and D. Harel. A probabilistic dynamic logic. J. Comput. Syst. Sci., 28:193–215, 1984.CrossRefGoogle Scholar
  63. [Feldman, 1984]
    Y. A. Feldman. A decidable propositional dynamic logic with explicit probabilities. Infor, and Control, 63:11–38, 1984.CrossRefGoogle Scholar
  64. [Fischer and Ladner, 1977]
    M. J. Fischer and R. E. Ladner. Propositional modal logic of programs. In Proc. 9th Symp. Theory of Comput., pages 286–294. ACM, 1977.Google Scholar
  65. [Fischer and Ladner, 1979]
    M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. J. Comput. Syst. Sci., 18(2):194–211, 1979.CrossRefGoogle Scholar
  66. [Floyd, 1967]
    R. W. Floyd. Assigning meanings to programs. In Proc. Symp. Appl. Math., volume 19, pages 19–31. AMS, 1967.Google Scholar
  67. [Friedman, 1971]
    H. Friedman. Algorithmic procedures, generalized Turing algorithms, and elementary recursion theory. In Gandy and Yates, editors, Logic Colloq. 1969, pages 361–390. North-Holland, 1971.Google Scholar
  68. [Gabbay et al., 1980]
    D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In Proc. 7th Symp. Princip. Prog. Lang., pages 163–173. ACM, 1980.Google Scholar
  69. [Gabbay et al., 1994]
    D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic-Mathematical Foundations and Computational Aspects. Oxford University Press, 1994.CrossRefGoogle Scholar
  70. [Gabbay, 1977]
    D. Gabbay. Axiomatizations of logics of programs. Unpublished, 1977.Google Scholar
  71. [Goldblatt, 1982]
    R. Goldblatt. Axiomatising the Logic of Computer Programming, volume 130 of Lect. Notes in Comput. Sci. Springer-Verlag, 1982.Google Scholar
  72. [Goldblatt, 1987]
    R. Goldblatt. Logics of time and computation. Technical Report Lect. Notes 7, Center for the Study of Language and Information, Stanford Univ., 1987.Google Scholar
  73. [Greibach, 1975]
    S. Greibach. Theory of Program Structures: Schemes, Semantics, Verification, volume 36 of Lecture Notes in Computer Science. Springer Verlag, 1975.CrossRefGoogle Scholar
  74. [Gries, 1981]
    D. Gries. The Science of Programming. Springer-Verlag, 1981.CrossRefGoogle Scholar
  75. [Gurevich, 1983]
    Yu. Gurevich. Algebras of feasible functions. In 24-th IEEE Annual Symposium on Foundations of Computer Science, pages 210–214, 1983.CrossRefGoogle Scholar
  76. [Halpern and Reif, 1981]
    J. Y. Halpern and J. H. Reif. The propositional dynamic logic of deterministic, well-structured programs. In Proc. 22nd Symp. Found. Comput. Sci., pages 322–334. IEEE, 1981.Google Scholar
  77. [Halpern and Reif, 1983]
    J. Y. Halpern and J. H. Reif. The propositional dynamic logic of deterministic, well-structured programs. Theor. Comput. Sci., 27:127–165, 1983.CrossRefGoogle Scholar
  78. [Halpern, 1981]
    J. Y. Halpern. On the expressive power of dynamic logic II. Technical Report TM-204, MIT/LCS, 1981.Google Scholar
  79. [Halpern, 1982]
    J. Y. Halpern. Deterministic process logic is elementary. In Proc. 23rd Symp. Found. Comput. Sci., pages 204–216. IEEE, 1982.Google Scholar
  80. [Halpern, 1983]
    J. Y. Halpern. Deterministic process logic is elementary. Infor. and Control, 57(l):56–89, 1983.CrossRefGoogle Scholar
  81. [Hansson and Jonsson, 1994]
    H. Hansson and B. Jonsson. A logic for reasoning about time and probability. Formal Aspects of Computing, 6:512–535, 1994.CrossRefGoogle Scholar
  82. [Harel and Kozen, 1984]
    D. Harel and D. Kozen. A programming language for the inductive sets, and applications. Information and Control, 63(1–2):118–139, 1984.CrossRefGoogle Scholar
  83. [Harel and Paterson, 1984]
    D. Harel and M. S. Paterson. Undecidability of PDL with (Math). J. Comput. Syst. Sci., 29:359–365, 1984.CrossRefGoogle Scholar
  84. [Harel and Peleg, 1985]
    D. Harel and D. Peleg. More on looping vs. repeating in dynamic logic. Information Processing Letters, 20:87–90, 1985.CrossRefGoogle Scholar
  85. [Harel and Pratt, 1978]
    D. Harel and V. R. Pratt. Nondeterminism in logics of programs. In Proc. 5th Symp. Princip. Prog. Lang., pages 203–213. ACM, 1978.Google Scholar
  86. [Harel and Raz, 1993]
    D. Harel and D. Raz. Deciding properties of nonregular programs. SIAM J. Comput., 22:857–874, 1993.CrossRefGoogle Scholar
  87. [Harel and Raz, 1994]
    D. Harel and D. Raz. Deciding emptiness for stack automata on infinite trees. Information and Computation, 113:278–299, 1994.CrossRefGoogle Scholar
  88. [Harel and Sherman, 1982]
    D. Harel and R. Sherman. Looping vs. repeating in dynamic logic. Infor. and Control, 55:175–192, 1982.CrossRefGoogle Scholar
  89. [Harel and Sherman, 1985]
    D. Harel and R. Sherman. Propositional dynamic logic of flowcharts. Infor. and Control, 64:119–135, 1985.CrossRefGoogle Scholar
  90. [Harel and Singerman, 1996]
    D. Harel and E. Singerman. More on nonregular PDL: Finite models and Fibonacci-like programs. Information and Computation, 128:109–118, 1996.CrossRefGoogle Scholar
  91. [Harel et al., 1977]
    D. Harel, A. R. Meyer, and V. R. Pratt. Computability and completeness in logics of programs. In Proc. 9th Symp. Theory of Comput., pages 261–268. ACM, 1977.Google Scholar
  92. [Harel et al., 1982a]
    D. Harel, A. Pnueli, and M. Vardi. Two dimensional temporal logic and PDL with intersection. Unpublished, 1982.Google Scholar
  93. [Harel et al., 1982b]
    D. Harel, D. Kozen, and R. Parikh. Process logic: Expressiveness, decidability, completeness. J. Comput. Syst. Sci., 25(2):144–170, 1982.CrossRefGoogle Scholar
  94. [Harel et al., 1983]
    D. Harel, A. Pnueli, and J. Stavi. Propositional dynamic logic of nonregular programs. J. Comput. Syst. Sci., 26:222–243, 1983.CrossRefGoogle Scholar
  95. [Harel et al., 2000]
    D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, Cambridge, MA, 2000.Google Scholar
  96. [Harel, 1979]
    D. Harel. First-Order Dynamic Logic, volume 68 of Lect. Notes in Comput. Sci. Springer-Verlag, 1979.CrossRefGoogle Scholar
  97. [Harel, 1984]
    D. Harel. Dynamic logic. In Gabbay and Guenthner, editors, Handbook of Philosophical Logic, volume II: Extensions of Classical Logic, pages 497–604. Reidel, 1984.CrossRefGoogle Scholar
  98. [Harel, 1985]
    D. Harel. Recurring dominoes: Making the highly undecidable highly understandable. Annals of Discrete Mathematics, 24:51–72, 1985.Google Scholar
  99. [Harel, 1992]
    D. Harel. Algorithmics: The Spirit of Computing. Addison-Wesley, second edition, 1992.Google Scholar
  100. [Hart et al., 1982]
    S. Hart, M. Sharir, and A. Pnueli. Termination of probabilistic concurrent programs. In Proc. 9th Symp. Princip. Prog. Lang., pages 1–6. ACM, 1982.Google Scholar
  101. [Hartonas, 1998]
    C. Hartonas. Duality for modal μ-logics. Theor. Comput. Sci., 202(1–2):193–222, 1998.CrossRefGoogle Scholar
  102. [Hennessy and Plotkin, 1979]
    M. C. B. Hennessy and G. D. Plotkin. Full abstraction for a simple programming language. In Proc. Symp. Semantics of Algorithmic Languages, volume 74 of Lecture Notes in Computer Science, pages 108–120. Springer-Verlag, 1979.Google Scholar
  103. [Hitchcock and Park, 1972]
    P. Hitchcock and D. Park. Induction rules and termination proofs. In M. Nivat, editor, Int. Colloq. Automata Lang. Prog., pages 225–251. North-Holland, 1972.Google Scholar
  104. [Hoare, 1969]
    C. A. R. Hoare. An axiomatic basis for computer programming. Comm. Assoc. Comput. Mach., 12:576–580, 583, 1969.Google Scholar
  105. [Hopkins and Kozen, 1999]
    M. Hopkins and D. Kozen. Parikh’s theorem in commutative Kleene algebra. In Proc. Conf. Logic in Computer Science (LICS’99), pages 394–401. IEEE, July 1999.Google Scholar
  106. [Hughes and Cresswell, 1968]
    G. E. Hughes and M. J. Cresswell. An Introduction to Modal Logic. Methuen, 1968.Google Scholar
  107. [Huth and Kwiatkowska, 1997]
    M. Huth and M. Kwiatkowska. Quantitative analysis and model checking. In Proc. 12th Symp. Logic in Comput. Sci., pages 111–122. IEEE, 1997.Google Scholar
  108. [Ianov, 1960]
    Y. I. Ianov. The logical schemes of algorithms. In Problems of Cybernetics, volume 1, pages 82–140. Pergamon Press, 1960.Google Scholar
  109. [Iwano and Steiglitz, 1990]
    K. Iwano and K. Steiglitz. A semiring on convex polygons and zero-sum cycle problems. SIAM J. Comput, 19(5):883–901, 1990.CrossRefGoogle Scholar
  110. [Jou and Smolka, 1990]
    C. Jou and S. Smolka. Equivalences, congruences and complete axiomatizations for probabilistic processes. In Proc. CONCUR’90, volume 458 of Lecture Notes in Comput. Sci., pages 367–383. Springer-Verlag, 1990.Google Scholar
  111. [Kaivola, 1997]
    R. Kaivola. Using Automata to Characterise Fixed Point Temporal Logics. PhD thesis, University of Edinburgh, April 1997. Report CST-135–97.Google Scholar
  112. [Kamp, 1968]
    H. W. Kamp. Tense logics and the theory of linear order. PhD thesis, UCLA, 1968.Google Scholar
  113. [Keisler, 1971]
    J. Keisler. Model Theory for Infinitary Logic. North Holland, 1971.Google Scholar
  114. [Kfoury and Stolboushkin, 1997]
    A.J. Kfoury and A.P. Stolboushkin. An infinite pebble game and applications. Information and Computation, 136:53–66, 1997.CrossRefGoogle Scholar
  115. [Kfoury, 1983]
    A.J. Kfoury. Definability by programs in first-order structures. Theoretical Computer Science, 25:1–66, 1983.CrossRefGoogle Scholar
  116. [Kfoury, 1985]
    A. J. Kfoury. Definability by deterministic and nondeterministic programs with applications to first-order dynamic logic. Infor. and Control, 65(2–3):98–121, 1985.CrossRefGoogle Scholar
  117. [Kleene, 1956]
    S. C. Kleene. Representation of events in nerve nets and finite automata. In C. E. Shannon and J. McCarthy, editors, Automata Studies, pages 3–41. Princeton University Press, Princeton, N.J., 1956.Google Scholar
  118. [Knijnenburg, 1988]
    P. M. W. Knijnenburg. On axiomatizations for propositional logics of programs. Technical Report RUU-CS-88–34, Rijksuniversiteit Utrecht, November 1988.Google Scholar
  119. [Koren and Pnueli, 1983]
    T. Koren and A. Pnueli. There exist decidable context-free propositional dynamic logics. In Proc. Symp. on Logics of Programs, volume 164 of Lecture Notes in Computer Science, pages 290–312. Springer-Verlag, 1983.Google Scholar
  120. [Kowalczyk et al., 1987]
    W. Kowalczyk, D. Niwinski, and J. Tiuryn. A generalization of Cook’s auxiliary-pushdown-automata theorem. Fundamenta Informaticae, XII:497–506, 1987.Google Scholar
  121. [Kozen and Parikh, 1981]
    D. Kozen and R. Parikh. An elementary proof of the completeness of FPL. Theor. Comput. Sci., 14(1):113–118, 1981.CrossRefGoogle Scholar
  122. [Kozen and Parikh, 1983]
    D. Kozen and R. Parikh. A decision procedure for the propositional μ-calculus. In Clarke and Kozen, editors, Proc. Workshop on Logics of Programs, volume 164 of Lecture Notes in Computer Science, pages 313–325. Springer-Verlag, 1983.Google Scholar
  123. [Kozen and Patron, 2000]
    D. Kozen and M.-C. Patron. Certification of compiler optimizations using Kleene algebra with tests. In J. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv, and P. J. Stuckey, editors, Proc. 1st Int. Conf. Computational Logic (CL2000), volume 1861 of Lecture Notes in Artificial Intelligence, pages 568–582, London, July 2000. Springer-Verlag.Google Scholar
  124. [Kozen and Smith, 1996]
    D. Kozen and F. Smith. Kleene algebra with tests: Completeness and decidability. In D. van Dalen and M. Bezem, editors, Proc. 10th Int. Workshop Computer Science Logic (CSL’96), volume 1258 of Lecture Notes in Computer Science, pages 244–259, Utrecht, The Netherlands, September 1996. Springer-Verlag.Google Scholar
  125. [Kozen and Tiuryn, 1990]
    D. Kozen and J. Tiuryn. Logics of programs. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, pages 789–840. North Holland, Amsterdam, 1990.Google Scholar
  126. [Kozen, 1979a]
    D. Kozen. Dynamic algebra. In E. Engeler, editor, Proc. Workshop on Logic of Programs, volume 125 of Lecture Notes in Computer Science, pages 102–144. Springer-Verlag, 1979. chapter of Propositional dynamic logics of programs: A survey by Rohit Parikh.Google Scholar
  127. [Kozen, 1979b]
    D. Kozen. On the duality of dynamic algebras and Kripke models. In E. Engeler, editor, Proc. Workshop on Logic of Programs, volume 125 of Lecture Notes in Computer Science, pages 1–11. Springer-Verlag, 1979.Google Scholar
  128. [Kozen, 1979c]
    D. Kozen. On the representation of dynamic algebras. Technical Report RC7898, IBM Thomas J. Watson Research Center, October 1979.Google Scholar
  129. [Kozen, 1980a]
    D. Kozen. On the representation of dynamic algebras II. Technical Report RC8290, IBM Thomas J. Watson Research Center, May 1980.Google Scholar
  130. [Kozen, 1980b]
    D. Kozen. A representation theorem for models of *-free PDL. In Proc. 7th Colloq. Automata, Languages, and Programming, pages 351–362. EATCS, July 1980.CrossRefGoogle Scholar
  131. [Kozen, 1981a]
    D. Kozen. Logics of programs. Lecture notes, Aarhus University, Denmark, 1981.Google Scholar
  132. [Kozen, 1981b]
    D. Kozen. On induction vs. *-continuity. In Kozen, editor, Proc. Workshop on Logic of Programs, volume 131 of Lecture Notes in Computer Science, pages 167–176, New York, 1981. Springer-Verlag.Google Scholar
  133. [Kozen, 1981c]
    D. Kozen. On the expressiveness of μ. Manuscript, 1981.Google Scholar
  134. [Kozen, 1981d]
    D. Kozen. Semantics of probabilistic programs. J. Comput. Syst. Sci., 22:328–350, 1981.CrossRefGoogle Scholar
  135. [Kozen, 1982]
    D. Kozen. Results on the propositional μ-calculus. In Proc. 9th Int. Colloq. Automata, Languages, and Programming, pages 348–359, Aarhus, Denmark, July 1982. EATCS.CrossRefGoogle Scholar
  136. [Kozen, 1983]
    D. Kozen. Results on the propositional μ-calculus. Theor. Comput. Sci., 27:333–354, 1983.CrossRefGoogle Scholar
  137. [Kozen, 1984]
    D. Kozen. A Ramsey theorem with infinitely many colors. In Lenstra, Lenstra, and van Emde Boas, editors, Dopo Le Parole, pages 71–72. University of Amsterdam, Amsterdam, May 1984.Google Scholar
  138. [Kozen, 1985]
    D. Kozen. A probabilistic PDL. J. Comput. Syst. Sci., 30(2):162–178, April 1985.CrossRefGoogle Scholar
  139. [Kozen, 1988]
    D. Kozen. A finite model theorem for the propositional μ-calculus. Studia Logica, 47(3):233–241, 1988.CrossRefGoogle Scholar
  140. [Kozen, 1990]
    D. Kozen. On Kleene algebras and closed semirings. In Rovan, editor, Proc. Math. Found. Comput. Sci., volume 452 of Lecture Notes in Computer Science, pages 26–47, Banska-Bystrica, Slovakia, 1990. Springer-Verlag.Google Scholar
  141. [Kozen, 1991a]
    D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events. In Proc. 6th Symp. Logic in Comput. Sci., pages 214–225, Amsterdam, July 1991. IEEE.Google Scholar
  142. [Kozen, 1991b]
    D. Kozen. The Design and Analysis of Algorithms. Springer-Verlag, New York, 1991.Google Scholar
  143. [Kozen, 1994a]
    D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events. Infor. and Comput., 110(2):366–390, May 1994.CrossRefGoogle Scholar
  144. [Kozen, 1994b]
    D. Kozen. On action algebras. In J. van Eijck and A. Visser, editors, Logic and Information Flow, pages 78–88. MIT Press, 1994.Google Scholar
  145. [Kozen, 1996]
    D. Kozen. Kleene algebra with tests and commutativity conditions. In T. Margaria and B. Steffen, editors, Proc. Second Int. Workshop Tools and Algorithms for the Construction and Analysis of Systems (TACAS’96), volume 1055 of Lecture Notes in Computer Science, pages 14–33, Passau, Germany, March 1996. Springer-Verlag.CrossRefGoogle Scholar
  146. [Kozen, 1997a]
    D. Kozen. Automata and Computability. Springer-Verlag, New York, 1997.CrossRefGoogle Scholar
  147. [Kozen, 1997b]
    D. Kozen. Kleene algebra with tests. Transactions on Programming Languages and Systems, 19(3):427–443, May 1997.CrossRefGoogle Scholar
  148. [Kozen, 1997c]
    D. Kozen. On the complexity of reasoning in Kleene algebra. In Proc. 12th Symp. Logic in Comput. Sci., pages 195–202, Los Alamitos, Ca., June 1997. IEEE.Google Scholar
  149. [Kozen, 1998]
    D. Kozen. Typed Kleene algebra. Technical Report 98–1669, Computer Science Department, Cornell University, March 1998.Google Scholar
  150. [Kozen, 1999a]
    D. Kozen. On Hoare logic and Kleene algebra with tests. In Proc. Conf. Logic in Computer Science (LICS’99), pages 167–172. IEEE, July 1999.Google Scholar
  151. [Kozen, 1999b]
    D. Kozen. On Hoare logic, Kleene algebra, and types. Technical Report 99–1760, Computer Science Department, Cornell University, July 1999. Abstract in: Abstracts of 11th Int. Congress Logic, Methodology and Philosophy of Science, Ed. J. Cachro and K. Kijania-Placek, Krakow, Poland, August 1999, p. 15. To appear in: Proc. 11th Int. Congress Logic, Methodology and Philosophy of Science, ed. P. Gardenfors, K. Kijania-Placek and J. Wolenski, Kluwer.Google Scholar
  152. [Krob, 1991]
    Daniel Krob. A complete system of B-rational identities. Theoretical Computer Science, 89(2):207–343, October 1991.CrossRefGoogle Scholar
  153. [Kuich and Salomaa, 1986]
    W. Kuich and A. Salomaa. Semirings, Automata, and Languages. Springer-Verlag, Berlin, 1986.CrossRefGoogle Scholar
  154. [Kuich, 1987]
    W. Kuich. The Kleene and Parikh theorem in complete semirings. In T. Ottmann, editor, Proc. 14th Colloq. Automata, Languages, and Programming, volume 267 of Lecture Notes in Computer Science, pages 212–225, New York, 1987. EATCS, Springer-Verlag.CrossRefGoogle Scholar
  155. [Ladner, 1977]
    R. E. Ladner. Unpublished, 1977.Google Scholar
  156. [Lamport, 1980]
    L. Lamport. “Sometime” is sometimes “not never”. Proc. 1th Symp. Princip. Prog. Lang., pages 174–185, 1980.Google Scholar
  157. [Lehmann and Shelah, 1982]
    D. Lehmann and S. Shelah. Reasoning with time and chance. Infor. and Control, 53(3):165–198, 1982.CrossRefGoogle Scholar
  158. [Lewis and Papadimitriou, 1981]
    H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation. Prentice Hall, 1981.Google Scholar
  159. [Lipton, 1977]
    R. J. Lipton. A necessary and sufficient condition for the existence of Hoare logics. In Proc. 18th Symp. Found. Comput. Sci., pages 1–6. IEEE, 1977.Google Scholar
  160. [Luckham et al., 1970]
    D. C. Luckham, D. Park, and M. Paterson. On formalized computer programs. J. Comput. Syst. Sci., 4:220–249, 1970.CrossRefGoogle Scholar
  161. [Mader, 1997]
    A. Mader. Verification of Modal Properties Using Boolean Equation Systems. PhD thesis, Fakultt fr Informatik, Technische Universitt Mnchen, September 1997.Google Scholar
  162. [Makowsky and Sain, 1986]
    J. A. Makowsky and I. Sain. On the equivalence of weak second-order and nonstandard time semantics for various program verification systems. In Proc. 1st Symp. Logic in Comput. Sci., pages 293–300. IEEE, 1986.Google Scholar
  163. [Makowsky, 1980]
    J. A. Makowsky. Measuring the expressive power of dynamic logics: an application of abstract model theory. In Proc. 7th Int. Colloq. Automata Lang. Prog., volume 80 of Lect. Notes in Comput. Sci., pages 409–421. Springer-Verlag, 1980.Google Scholar
  164. [Makowsky and Tiomkin, 1980]
    J. A. Makowsky and M. L. Tiomkin. Probabilistic propositional dynamic logic. Manuscript, 1980.Google Scholar
  165. [Manna and Pnueli, 1981]
    Z. Manna and A. Pnueli. Verification of concurrent programs: temporal proof principles. In D. Kozen, editor, Proc. Workshop on Logics of Programs, volume 131 of Lect. Notes in Comput. Sci., pages 200–252. Springer-Verlag, 1981.Google Scholar
  166. [Manna and Pnueli, 1987]
    Z. Manna and A. Pnueli. Specification and verification of concurrent programs by ?-automata. In Proc. 14th Symp. Principles of Programming Languages, pages 1–12. ACM, January 1987.Google Scholar
  167. [Manna, 1974]
    Z. Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.Google Scholar
  168. [McCulloch and Pitts, 1943]
    W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophysics, 5:115–143, 1943.CrossRefGoogle Scholar
  169. [Mehlhorn, 1984]
    K. Mehlhorn. Graph Algorithms and NP-Completeness, volume II of Data Structures and Algorithms. Springer-Verlag, 1984.Google Scholar
  170. [Meyer and Halpern, 1982]
    A. R. Meyer and J. Y. Halpern. Axiomatic definitions of programming languages: a theoretical assessment. J. Assoc. Comput. Mach., 29:555–576, 1982.CrossRefGoogle Scholar
  171. [Meyer and Parikh, 1981]
    A. R. Meyer and R. Parikh. Definability in dynamic logic. J. Comput. Syst. Sci., 23:279–298, 1981.CrossRefGoogle Scholar
  172. [Meyer and Tiuryn, 1981]
    A. R. Meyer and J. Tiuryn. A note on equivalences among logics of programs. In D. Kozen, editor, Proc. Workshop on Logics of Programs, volume 131 of Lect. Notes in Comput. Sci., pages 282–299. Springer-Verlag, 1981.Google Scholar
  173. [Meyer and Tiuryn, 1984]
    A. R. Meyer and J. Tiuryn. Equivalences among logics of programs. Journal of Computer and Systems Science, 29:160–170, 1984.CrossRefGoogle Scholar
  174. [Meyer and Winklmann, 1982]
    A. R. Meyer and K. Winklmann. Expressing program looping in regular dynamic logic. Theor. Comput. Sci., 18:301–323, 1982.CrossRefGoogle Scholar
  175. [Meyer et al., 1981]
    A. R. Meyer, R. S. Streett, and G. Mirkowska. The deducibility problem in propositional dynamic logic. In E. Engeler, editor, Proc. Workshop Logic of Programs, volume 125 of Lect. Notes in Comput. Sci., pages 12–22. Springer-Verlag, 1981.CrossRefGoogle Scholar
  176. [Miller, 1976]
    G. L. Miller. Riemann’s hypothesis and tests for primality. J. Comput. Syst. Sci., 13:300–317, 1976.CrossRefGoogle Scholar
  177. [Mirkowska, 1971]
    G. Mirkowska. On formalized systems of algorithmic logic. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys., 19:421–428, 1971.Google Scholar
  178. [Mirkowska, 1980]
    G. Mirkowska. Algorithmic logic with nondeterministic programs. Fund. Informaticae, 111:45–64, 1980.Google Scholar
  179. [Mirkowska, 1981a]
    G. Mirkowska. PAL—propositional algorithmic logic. In E. Engeler, editor, Proc. Workshop Logic of Programs, volume 125 of Lect. Notes in Comput. Sci., pages 23–101. Springer-Verlag, 1981.CrossRefGoogle Scholar
  180. [Mirkowska, 1981b]
    G. Mirkowska. PAL—propositional algorithmic logic. Fund. Infor-maticae, IV:675–760, 1981.Google Scholar
  181. [Morgan et al., 1999]
    C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate transformers. ACM Trans. Programming Languages and Systems, 8(1): 1–30, 1999.Google Scholar
  182. [Moschovakis, 1974]
    Y. N. Moschovakis. Elementary Induction on Abstract Structures. North-Holland, 1974.Google Scholar
  183. [Muller et al., 1988]
    D. E. Muller, A. Saoudi, and P. E. Schupp. Weak alternating automata give a simple explanation of why most temporal and dynamic logics are de-cidable in exponential time. In Proc. 3rd Symp. Logic in Computer Science, pages 422–427. IEEE, July 1988.Google Scholar
  184. [Németi, 1980]
    I. Németi. Every free algebra in the variety generated by the repre-sentable dynamic algebras is separable and representable. Manuscript, 1980.Google Scholar
  185. [Németi, 1981]
    I. Németi. Nonstandard dynamic logic. In D. Kozen, editor, Proc. Workshop on Logics of Programs, volume 131 of Lect. Notes in Comput. Sci., pages 311–348. Springer-Verlag, 1981.Google Scholar
  186. [Ng and Tarski, 1977]
    K. C. Ng and A. Tarski. Relation algebras with transitive closure, abstract 742–02–09. Notices Amer. Math. Soc, 24:A29–A30, 1977.Google Scholar
  187. [Ng, 1984]
    K. C. Ng. Relation Algebras with Transitive Closure. PhD thesis, University of California, Berkeley, 1984.Google Scholar
  188. [Nishimura, 1979]
    H. Nishimura. Sequential method in propositional dynamic logic. Acta Informatica, 12:377–400, 1979.CrossRefGoogle Scholar
  189. [Nishimura, 1980]
    H. Nishimura. Descriptively complete process logic. Acta Informatica, 14:359–369, 1980.CrossRefGoogle Scholar
  190. [Niwinski, 1984]
    D. Niwinski. The propositional μ-calculus is more expressive than the propositional dynamic logic of looping. University of Warsaw, 1984.Google Scholar
  191. [Parikh and Mahoney, 1983]
    R. Parikh and A. Mahoney. A theory of probabilistic programs. In E. Clarke and D. Kozen, editors, Proc. Workshop on Logics of Programs, volume 164 of Lect. Notes in Comput. Sci., pages 396–402. Springer-Verlag, 1983.Google Scholar
  192. [Parikh, 1978a]
    R. Parikh. The completeness of propositional dynamic logic. In Proc. 7th Symp. on Math. Found. of Comput. Sci., volume 64 of Lect. Notes in Comput. Sci., pages 403–415. Springer-Verlag, 1978.Google Scholar
  193. [Parikh, 1978b]
    R. Parikh. A decidability result for second order process logic. In Proc. 19th Symp. Found. Comput. Sci., pages 177–183. IEEE, 1978.Google Scholar
  194. [Parikh, 1981]
    R. Parikh. Propositional dynamic logics of programs: a survey. In E. Engeler, editor, Proc. Workshop on Logics of Programs, volume 125 of Lect. Notes in Comput. Sci., pages 102–144. Springer-Verlag, 1981.CrossRefGoogle Scholar
  195. [Parikh, 1983]
    R. Parikh. Propositional game logic. In Proc. 23rd IEEE Symp. Foundations of Computer Science, 1983.Google Scholar
  196. [Park, 1976]
    D. Park. Finiteness is μ-ineffable. Theor. Comput. Sci., 3:173–181, 1976.CrossRefGoogle Scholar
  197. [Paterson and Hewitt, 1970]
    M. S. Paterson and C. E. Hewitt. Comparative schematol-ogy. In Record Project MA C Conf. on Concurrent Systems and Parallel Computation, pages 119–128. ACM, 1970.Google Scholar
  198. [Pecuchet, 1986]
    J. P. Pecuchet. On the complementation of Büchi automata. Theor. Comput. Sci., 47:95–98, 1986.CrossRefGoogle Scholar
  199. [Peleg, 1987a]
    D. Peleg. Communication in concurrent dynamic logic. J. Comput. Sys. Sci., 35:23–58, 1987.CrossRefGoogle Scholar
  200. [Peleg, 1987b]
    D. Peleg. Concurrent dynamic logic. J. Assoc. Comput. Mach., 34(2):450–479, 1987.CrossRefGoogle Scholar
  201. [Peleg, 1987c]
    D. Peleg. Concurrent program schemes and their logics. Theor. Comput. Sci., 55:1–45, 1987.CrossRefGoogle Scholar
  202. [Peng and Iyer, 1995]
    W. Peng and S. Purushothaman Iyer. A new type of pushdown-tree automata on infinite trees. Int. J. of Found. of Comput. Sci., 6(2): 169–186, 1995.CrossRefGoogle Scholar
  203. [Peterson, 1978]
    G. L. Peterson. The power of tests in propositional dynamic logic. Technical Report 47, Comput. Sci. Dept., Univ. of Rochester, 1978.Google Scholar
  204. [Pnueli, 1977]
    A. Pnueli. The temporal logic of programs. In Proc. 18th Symp. Found. Comput. Sci., pages 46–57. IEEE, 1977.Google Scholar
  205. [Pratt, 1976]
    V. R. Pratt. Semantical considerations on Floyd-Hoare logic. In Proc. 17th Symp. Found. Comput. Sci., pages 109–121. IEEE, 1976.Google Scholar
  206. [Pratt, 1978]
    V. R. Pratt. A practical decision method for propositional dynamic logic. In Proc. 10th Symp. Theory of Comput, pages 326–337. ACM, 1978.Google Scholar
  207. [Pratt, 1979a]
    V. R. Pratt. Dynamic algebras: examples, constructions, applications. Technical Report TM-138, MIT/LCS, July 1979.Google Scholar
  208. [Pratt, 1979b]
    V. R. Pratt. Models of program logics. In Proc. 20th Symp. Found. Comput. Sci., pages 115–122. IEEE, 1979.Google Scholar
  209. [Pratt, 1979c]
    V. R. Pratt. Process logic. In Proc. 6th Symp. Princip. Prog. Lang., pages 93–100. ACM, 1979.Google Scholar
  210. [Pratt, 1980a]
    V. R. Pratt. Dynamic algebras and the nature of induction. In Proc. 12th Symp. Theory of Comput., pages 22–28. ACM, 1980.Google Scholar
  211. [Pratt, 1980b]
    V. R. Pratt. A near-optimal method for reasoning about actions. J. Comput. Syst. Sci., 20(2):231–254, 1980.CrossRefGoogle Scholar
  212. [Pratt, 1981a]
    V. R. Pratt. A decidable μ-calculus: preliminary report. In Proc. 22nd Symp. Found. Comput. Sci., pages 421–427. IEEE, 1981.Google Scholar
  213. [Pratt, 1981b]
    V. R. Pratt. Using graphs to understand PDL. In D. Kozen, editor, Proc. Workshop on Logics of Programs, volume 131 of Lect. Notes in Comput. Sci., pages 387–396. Springer-Verlag, 1981.Google Scholar
  214. [Pratt, 1988]
    V. Pratt. Dynamic algebras as a well-behaved fragment of relation algebras. In D. Pigozzi, editor, Proc. Conf. on Algebra and Computer Science, volume 425 of Lecture Notes in Computer Science, pages 77–110, Ames, Iowa, June 1988. Springer-Verlag.Google Scholar
  215. [Pratt, 1990]
    V. Pratt. Action logic and pure induction. In J. van Eijck, editor, Proc. Logics in AI: European Workshop JELIA’90, volume 478 of Lecture Notes in Computer Science, pages 97–120, New York, September 1990. Springer-Verlag.Google Scholar
  216. [Rabin and Scott, 1959]
    M. O. Rabin and D. S. Scott. Finite automata and their decision problems. IBM J. Res. Develop., 3(2):115–125, 1959.CrossRefGoogle Scholar
  217. [Rabin, 1980]
    M. O. Rabin. Probabilistic algorithms for testing primality. J. Number Theory, 12:128–138, 1980.CrossRefGoogle Scholar
  218. [Ramshaw, 1981]
    L. H. Ramshaw. Formalizing the analysis of algorithms. PhD thesis, Stanford Univ., 1981.Google Scholar
  219. [Rasiowa and Sikorski, 1963]
    H. Rasiowa and R. Sikorski. Mathematics of Metamathematics. Polish Scientific Publishers, PWN, 1963.Google Scholar
  220. [Redko, 1964]
    V. N. Redko. On defining relations for the algebra of regular events. Ukrain. Mat. Z., 16:120–126, 1964. In Russian.Google Scholar
  221. [Reif, 1980]
    J. Reif. Logics for probabilistic programming. In Proc. 12th Symp. Theory of Comput., pages 8–13. ACM, 1980.Google Scholar
  222. [Rogers, 1967]
    H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1967.Google Scholar
  223. [Safra, 1988]
    S. Safra. On the complexity of ω-automata. In Proc. 29th Symp. Foundations of Comput. Sci., pages 319–327. IEEE, October 1988.Google Scholar
  224. [Sakarovitch, 1987]
    J. Sakarovitch. Kleene’s theorem revisited: A formal path from Kleene to Chomsky. In A. Kelemenova and J. Keleman, editors, Trends, Techniques, and Problems in Theoretical Computer Science, volume 281 of Lecture Notes in Computer Science, pages 39–50, New York, 1987. Springer-Verlag.CrossRefGoogle Scholar
  225. [Salomaa, 1966]
    A. Salomaa. Two complete axiom systems for the algebra of regular events. J. Assoc. Comput. Mach., 13(1):158–169, January 1966.CrossRefGoogle Scholar
  226. [Salwicki, 1970]
    A. Salwicki. Formalized algorithmic languages. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys., 18:227–232, 1970.Google Scholar
  227. [Salwicki, 1977]
    A. Salwicki. Algorithmic logic: a tool for investigations of programs. In Butts and Hintikka, editors, Logic Foundations of Mathematics and Computability Theory, pages 281–295. Reidel, 1977.CrossRefGoogle Scholar
  228. [Sazonov, 1980]
    V.Y. Sazonov. Polynomial computability and recursivity in finite domains. Elektronische Informationsverarbeitung und Kibernetik, 16:319–323, 1980.Google Scholar
  229. [Scott and de Bakker, 1969]
    D. S. Scott and J. W. de Bakker. A theory of programs. IBM Vienna, 1969.Google Scholar
  230. [Segala and Lynch, 1994]
    R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In Proc. CONCUR’94, volume 836 of Lecture Notes in Comput. Sci., pages 481–496. Springer-Verlag, 1994.Google Scholar
  231. [Segerberg, 1977]
    K. Segerberg. A completeness theorem in the modal logic of programs (preliminary report). Not. Amer. Math. Soc, 24(6):A-552, 1977.Google Scholar
  232. [Shoenfield, 1967]
    J. R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.Google Scholar
  233. [Sholz, 1952]
    H. Sholz. Ein ungelöstes Problem in der symbolischen Logik. The Journal of Symbolic Logic, 17:160, 1952.Google Scholar
  234. [Sistla and Clarke, 1982]
    A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. In Proc. 14th Symp. Theory of Comput., pages 159–168. ACM, 1982.Google Scholar
  235. [Sistla et al., 1987]
    A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Büchi automata with application to temporal logic. Theor. Comput. Sci., 49:217–237, 1987.CrossRefGoogle Scholar
  236. [Sokolsky and Smolka, 1994]
    O. Sokolsky and S. Smolka. Incremental model checking in the modal μ-calculus. In D. Dill, editor, Proc. Conf. Computer Aided Verification, volume 818 of Lect. Notes in Comput. Sci., pages 352–363. Springer, June 1994.Google Scholar
  237. [Steffen et al., 1996]
    B. Steffen, T. Margaria, A. Classen, V. Braun, R. Nisius, and M. Reitenspiess. A constraint oriented service environment. In T. Margaria and B. Steffen, editors, Proc. Second Int. Workshop Tools and Algorithms for the Construction and Analysis of Systems (TACAS’96), volume 1055 of Lect. Notes in Comput. Sci., pages 418–421. Springer, March 1996.CrossRefGoogle Scholar
  238. [Stirling and Walker, 1989]
    C. Stirling and D. Walker. Local model checking in the modal μ-calculus. In Proc. Int. Joint Conf. Theory and Practice of Software Develop. (TAPSOFT89), volume 352 of Lect. Notes in Comput. Sci., pages 369–383. Springer, March 1989.Google Scholar
  239. [Stirling, 1992]
    C. Stirling. Modal and temporal logics. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook of Logic in Computer Science, pages 477–563. Clarendon Press, 1992.Google Scholar
  240. [Stockmeyer and Meyer, 1973]
    L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In Proc. 5th Symp. Theory of Computing, pages 1–9, New York, 1973. ACM.Google Scholar
  241. [Stolboushkin and Taitslin, 1983]
    A. P. Stolboushkin and M. A. Taitslin. Deterministic dynamic logic is strictly weaker than dynamic logic. Infor. and Control, 57:48–55, 1983.CrossRefGoogle Scholar
  242. [Stolboushkin, 1983]
    A.P. Stolboushkin. Regular dynamic logic is not interpretable in deterministic context-free dynamic logic. Information and Computation, 59:94–107, 1983.Google Scholar
  243. [Stolboushkin, 1989]
    A.P. Stolboushkin. Some complexity bounds for dynamic logic. In Proc. 4th Symp. Logic in Comput. Sci., pages 324–332. IEEE, June 1989.Google Scholar
  244. [Streett and Emerson, 1984]
    R. Streett and E. A. Emerson. The propositional μ-calculus is elementary. In Proc. 11th Int. Colloq. on Automata Languages and Programming, pages 465–472. Springer, 1984. Lect. Notes in Comput. Sci. 172.CrossRefGoogle Scholar
  245. [Streett, 1981]
    R. S. Streett. Propositional dynamic logic of looping and converse. In Proc. 13th Symp. Theory of Comput., pages 375–381. ACM, 1981.Google Scholar
  246. [Streett, 1982]
    R. S. Streett. Propositional dynamic logic of looping and converse is elementarily decidable. Infor. and Control, 54:121–141, 1982.CrossRefGoogle Scholar
  247. [Streett, 1985a]
    R. S. Streett. Fixpoints and program looping: reductions from the propositional μ-calculus into propositional dynamic logics of looping. In R. Parikh, editor, Proc. Workshop on Logics of Programs, volume 193 of Lect. Notes in Comput. Sci., pages 359–372. Springer-Verlag, 1985.CrossRefGoogle Scholar
  248. [Streett, 1985b]
    R. Streett. Fixpoints and program looping: reductions from the propositional μ-calculus into propositional dynamic logics of looping. In Parikh, editor,Proc. Workshop on Logics of Programs 1985, pages 359–372. Springer, 1985. Lect. Notes in Comput. Sci. 193.Google Scholar
  249. [Tarjan, 1981]
    R. E. Tarjan. A unified approach to path problems. J. Assoc. Comput. Mach., pages 577–593, 1981.Google Scholar
  250. [Thiele, 1966]
    H. Thiele. Wissenschaftstheoretische Untersuchungen in algorithmischen sprachen. In Theorie der Graphschemata-Kalkale Veb Deutscher Verlag der Wissenschaften. Berlin, 1966.Google Scholar
  251. [Thomas, 1997]
    W. Thomas. Languages, automata, and logic. Technical Report 9607, Christian-Albrechts-Universität Kiel, May 1997.Google Scholar
  252. [Tiuryn and Urzyczyn, 1983]
    J. Tiuryn and P. Urzyczyn. Some relationships between logics of programs and complexity theory. In Proc. 24th Symp. Found. Comput. Sci., pages 180–184. IEEE, 1983.Google Scholar
  253. [Tiuryn and Urzyczyn, 1984]
    J. Tiuryn and P. Urzyczyn. Remarks on comparing expressive power of logics of programs. In Chytil and Koubek, editors, Proc. Math. Found. Comput. Sci., volume 176 of Lect. Notes in Comput. Sci., pages 535–543. Springer-Verlag, 1984.Google Scholar
  254. [Tiuryn and Urzyczyn, 1988]
    J. Tiuryn and P. Urzyczyn. Some relationships between logics of programs and complexity theory. Theor. Comput. Sci., 60:83–108, 1988.CrossRefGoogle Scholar
  255. [Tiuryn, 1981a]
    J. Tiuryn. A survey of the logic of effective definitions. In E. Engeler, editor, Proc. Workshop on Logics of Programs, volume 125 of Lect. Notes in Comput. Sci., pages 198–245. Springer-Verlag, 1981.CrossRefGoogle Scholar
  256. [Tiuryn, 1981b]
    J. Tiuryn. Unbounded program memory adds to the expressive power of first-order programming logics. In Proc. 22nd Symp. Found. Comput. Sci., pages 335–339. IEEE, 1981.Google Scholar
  257. [Tiuryn, 1984]
    J. Tiuryn. Unbounded program memory adds to the expressive power of first-order programming logics. Infor. and Control, 60:12–35, 1984.CrossRefGoogle Scholar
  258. [Tiuryn, 1986]
    J. Tiuryn. Higher-order arrays and stacks in programming: an application of complexity theory to logics of programs. In Gruska and Rovan, editors, Proc. Math. Found. Comput. Sci., volume 233 of Lect. Notes in Comput. Sci., pages 177–198. Springer-Verlag, 1986.Google Scholar
  259. [Tiuryn, 1989]
    J. Tiuryn. A simplified proof of DDL > DL. Information and Computation, 81:1–12, 1989.CrossRefGoogle Scholar
  260. [Trnkova and Reiterman, 1980]
    V. Trnkova and J. Reiterman. Dynamic algebras which are not Kripke structures. In Proc. 9th Symp. on Math. Found. Comput. Sci., pages 528–538, 1980.Google Scholar
  261. [Turing, 1936]
    A. M. Turing. On computable numbers with an application to the Entscheidungsproblem. Proc. London Math. Soc, 42:230–265, 1936. Erratum: Ibid., 43 (1937), pp. 544–546.Google Scholar
  262. [Urzyczyn, 1983]
    P. Urzyczyn. A necessary and sufficient condition in order that a Herbrand interpretation be expressive relative to recursive programs. Information and Control, 56:212–219, 1983.CrossRefGoogle Scholar
  263. [Urzyczyn, 1986]
    P. Urzyczyn. “During” cannot be expressed by “after”. Journal of Computer and System Sciences, 32:97–104, 1986.CrossRefGoogle Scholar
  264. [Urzyczyn, 1987]
    P. Urzyczyn. Deterministic context-free dynamic logic is more expressive than deterministic dynamic logic of regular programs. Fundamenta Informaticae, 10:123–142, 1987.Google Scholar
  265. [Urzyczyn, 1988]
    P. Urzyczyn. Logics of programs with Boolean memory. Fundamenta Informaticae, XI:21–40, 1988.Google Scholar
  266. [Valiev, 1980]
    M. K. Valiev. Decision complexity of variants of propositional dynamic logic. In Proc. 9th Symp. Math. Found. Comput. Sci., volume 88 of Lect. Notes in Comput. Sci., pages 656–664. Springer-Verlag, 1980.Google Scholar
  267. [van Emde Boas, 1978]
    P. van Emde Boas. The connection between modal logic and algorithmic logics. In Symp. on Math. Found. of Comp. Sci., pages 1–15, 1978.Google Scholar
  268. [Vardi and Stockmeyer, 1985]
    M. Y. Vardi and L. Stockmeyer. Improved upper and lower bounds for modal logics of programs: preliminary report. In Proc. 17th Symp. Theory of Comput, pages 240–251. ACM, May 1985.Google Scholar
  269. [Vardi and Wolper, 1986a]
    M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In Proc. 1st Symp. Logic in Computer Science, pages 332–344. IEEE, June 1986.Google Scholar
  270. [Vardi and Wolper, 1986b]
    M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of programs. J. Comput. Syst. Sci., 32:183–221, 1986.CrossRefGoogle Scholar
  271. [Vardi, 1985a]
    M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In Proc. 26th Symp. Found. Comput. Sci., pages 327–338. IEEE, October 1985.Google Scholar
  272. [Vardi, 1985b]
    M. Y. Vardi. The taming of the converse: reasoning about two-way computations. In R. Parikh, editor, Proc. Workshop on Logics of Programs, volume 193 of Lect. Notes in Comput. Sci., pages 413–424. Springer-Verlag, 1985.CrossRefGoogle Scholar
  273. [Vardi, 1987]
    M. Y. Vardi. Verification of concurrent programs: the automata-theoretic framework. In Proc. 2nd Symp. Logic in Comput. Sci., pages 167–176. IEEE, June 1987.Google Scholar
  274. [Vardi, 1998a]
    M. Vardi. Linear vs. branching time: a complexity-theoretic perspective. In Proc. 13th Symp. Logic in Comput. Sci., pages 394–405. IEEE, 1998.Google Scholar
  275. [Vardi, 1998b]
    M. Y. Vardi. Reasoning about the past with two-way automata. In Proc. 25th Int. Colloq. Automata Lang. Prog., volume 1443 of Lect. Notes in Comput. Sci., pages 628–641. Springer-Verlag, July 1998.Google Scholar
  276. [Walukiewicz, 1993]
    I. Walukiewicz. Completeness result for the propositional μ-calculus. In Proc. 8th IEEE Symp. Logic in Comput. Sci., June 1993.Google Scholar
  277. [Walukiewicz, 1995]
    I. Walukiewicz. Completeness of Kozen’s axiomatisation of the propositional μ-calculus. In Proc. 10th Symp. Logic in Comput. Sci., pages 14–24. IEEE, June 1995.Google Scholar
  278. [Walukiewicz, 2000]
    I. Walukiewicz. Completeness of Kozen’s axiomatisation of the propositional μ-calculus. Infor. and Comput., 157(1–2): 142–182, February-March 2000.CrossRefGoogle Scholar
  279. [Wand, 1978]
    M. Wand. A new incompleteness result for Hoare’s system. J. Assoc. Comput. Mach., 25:168–175, 1978.CrossRefGoogle Scholar
  280. [Wolper, 1981]
    P. Wolper. Temporal logic can be more expressive. In Proc. 22nd Symp. Foundations of Computer Science, pages 340–348. IEEE, 1981.Google Scholar
  281. [Wolper, 1983]
    P. Wolper. Temporal logic can be more expressive. Infor. and Control, 56:72–99, 1983.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • David Harel
    • 1
  • Dexter Kozen
    • 2
  • Jerzy Tiuryn
    • 3
  1. 1.The Weizmann Institute of ScienceRehovotIsrael
  2. 2.Cornell UniversityIthacaUSA
  3. 3.The University of WarsawWarsawPoland

Personalised recommendations