Skip to main content

Convergent Evolution in Extremely Halophilic Prokaryotes: A Comparison Between Salinibacter Ruber (Bacteria) and the Halobacteriaceae (Archaea)

  • Chapter
Evolutionary Theory and Processes: Modern Horizons

Abstract

Salinibacter is an aerobic, red, extremely halophilic bacterium that was recently isolated from saltem crystallizer ponds in Spain. Phylogenetically, Salinibacter belongs to the Flavobacterium — Cytophaga — Bacteroides group. It is one of the most halophilic organisms belonging to the domain Bacteria, and it is unable to grow at salt concentrations below 150 g/1. A comparison of Salinibacter with the extremely halophilic representatives of the Halobacteriaceae (Archaea) shows many striking similarities. Both groups maintain high intracellular K+ and Cl concentrations. No organic osmotic solutes were detected in significant concentrations in the cytoplasm of either group, and the intracellular enzymatic machinery was found to be functional in the presence of molar concentrations of salt, an adaptation based on salt-requiring proteins with a high excess of acidic amino acids. Comparison of additional properties shows many additional similarities such as the absorption spectrum of the pigments, the use of (variations of) the Entner-Doudoroff pathway for sugar degradation, and even a similar G+C percentage of their DNA. These comparative studies suggest that we may be dealing here with an excellent example of convergent evolution, in which similar features have evolved in phylogenetically unrelated organisms as an adaptation to life at the highest salt concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken D.M. and Brown A.D. 1969. Citrate and glyoxylate cycles in the halophil, Halobacterium salinarum. Biochimica et Biophysica Acta, 177, 351–354.

    Google Scholar 

  • Aitken D.M., Wicken A.J. and Brown A.D. 1970. Properties of a halophil nicotinamideadenine dinucleotide phosphate-specific isocitrate dehydrogenase. Preliminary studies of the salt relations and kinetics of the crude enzyme. Biochem J. 116, 125–134.

    Google Scholar 

  • Alfredsson G.A., Kristjansson J.K., Hjorleifsdottir S. and Stetter K.O. 1988. Rhodothermus marinus gen. nov., a thermophilic, halophilic bacterium from submarine hot springs in Iceland. J Gen Microbiol. 134, 299–306.

    Google Scholar 

  • Altekar W. and Rangaswamy V. 1990. Induction of a modified EMP pathway for fructose breakdown in a halophilic archaebacterium. FEMS Microbiol Letters 69, 139–144.

    Article  CAS  Google Scholar 

  • Aitken D.M. and Brown A.D. 1969. Citrate and glyoxylate cycles in the halophil, Halobacterium salinarum. Biochimica et Biophysica Acta, 177, 351–354.

    Article  PubMed  CAS  Google Scholar 

  • Altekar W. and Rangaswamy V. 1991. Ketohexokinase (ATP: D-fructose 1-phosphotransferase) initiates fructose breakdown via the modified EMP pathway in halophilic archaebacteria. FEMS Microbiol Letters 83, 241–246.

    CAS  Google Scholar 

  • Antón J., Llobet-Brossa E., Rodriguez-Valera F. and Amann R. 1999. Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environm Microbiol. 1, 517–523.

    Article  Google Scholar 

  • Antón J., Rosselló-Mora R., Rodriguez-Valera F. and Amann R. 2000. Extremely halophilic Bacteria in crystallizer ponds from solar saltems. Appl Environm Microbiol. 66, 30523057.

    Google Scholar 

  • Antón J., Oren A., Benlloch S., Rodriguez-Valera F., Amann R. and Rosselló-Mora R. 2002. Salinibacter ruber gen. nov., sp. nov., a novel extreme halophilic member of the Bacteria from saltern crystallizer ponds. hit J Syst Evol Microbiol. 52, 485–491.

    Google Scholar 

  • Baxter R.M. and Gibbons N.E. 1954. The glyceroldehydrogenases of Pseudomonas saliaria, Vibrio costicola, and Escherichia coli in relation to bacterial halophilism. Can J Biochem Physiol. 32, 206–217.

    Article  PubMed  CAS  Google Scholar 

  • Baxter R.M. and Gibbons N.E. 1956. Effects of sodium and potassium on certain enzymes of Micrococcus halodenitrificans and Pseudomonas salinaria. Can J Microbiol. 2, 599–606.

    Article  PubMed  CAS  Google Scholar 

  • Bonete M.J., Camacho M.L. and Cadenas E. 1986. Purification and some properties of NAD -dependent glutamate dehydrogenase from Halobacterium halobium. Int J Biochem. 18, 785–789.

    Article  CAS  Google Scholar 

  • Bonete M.J., Camacho M.L. and Cadenas E. 1987. A new glutamate dehydrogenase from Halobacterium halobium with different coenzyme specificity. Int J Biochem. 19, 11491155.

    Google Scholar 

  • Bonete M.J., Pire C., Llorca F.I. and Camacho M.L. 1996. Glucose dehydrogenase from the halophilic archaeon Haloferax mediterranei: enzyme purification, characterisation, and N-terminal sequence. FEBS Letters 383, 227–229.

    Article  PubMed  CAS  Google Scholar 

  • Britton K.L., Stillman T.J., Yip K.S.P., Forterre P., Engel P.C. and Rice D.W. 1998. Insights into the molecular basis of salt tolerance from the study of glutamate dehydrogenase from Halobacterium salinarum. J Bio Chem. 293, 9023–9030.

    Article  Google Scholar 

  • Christian J.H.B. and Waltho J.A. 1962. Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochimica et Biophysica Acta 65, 506–508.

    Article  PubMed  CAS  Google Scholar 

  • Dennis P.P. and Shimmin L.C. 1997. Evolutionary divergence and salinity-mediated selection in halophilic Archaea. Microbiol Mol Biol Rev. 61, 90–104.

    PubMed  CAS  Google Scholar 

  • Desmarais D., Jablonski P.E., Fedarko N.S. and Roberts M.F. 1997. 2-Sulfotrehalose, a novel osmolyte in haloalkaliphilic archaea. J Bacteriol. 179, 3146–3153.

    Google Scholar 

  • Dhar N.M. and Altekar W. 1986a. A class I (Schiff base) fructose-1,6-bisphosphate aldolase of halophilic archaebacterial origin. FEBS Letters 199, 151–154.

    Article  CAS  Google Scholar 

  • Dhar N.M. and Altekar W. 1986b. Distribution of class I and class II fructose bisphosphate aldolases in halophilic archaebacteria. FEMS Microbiol Letters 35, 177–181.

    Article  CAS  Google Scholar 

  • D’Souza S.E. and Altekar W. 1982. A halophilic fructose 1,6-bisphosphate aldolase from Halobacterium halobium. hid J Biochem Biophys. 19, 135–138.

    Google Scholar 

  • Dundas I.D. and Larsen H. 1962. The physiological role of the carotenoid pigments of Halobacterium salinarium. Archiv fir Mikrobiologie 44, 233–239.

    Article  CAS  Google Scholar 

  • Dym O., Mevarech M. and Sussman J.L. 1995. Structural features that stabilize halophilic malate dehydrogenase from an archaebacterium. Science 267, 1344–1346.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg H. 1995. Life in unusual environments: progress in understanding the structure and function of enzymes from extreme halophilic bacteria. Arch Biochem Biophys. 318, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg H. and Wachtel E.J. 1987. Structural studies of halophilic proteins, ribosomes, and organelles of bacteria adapted to extreme salt concentrations. Ann Rev Biophys Biophys Chem. 16, 69–92.

    Article  CAS  Google Scholar 

  • Eisenberg H., Mevarech M. and Zaccai G. 1992. Biochemical, structural, and molecular genetic aspects of halophilism. Advan Prot Chem. 43, 1–62.

    Article  CAS  Google Scholar 

  • Ferrer J., Pérez-Pomares F. and Bonete M.J. 1996. NADP-glutamate dehydrogenase from the halophilic archaeon Haloferax mediterranei: enzyme purification, N-terminal sequence and stability. FEMS Microbiol Letters 141, 59–63.

    Google Scholar 

  • Ferrer J., Fisher M., Biirke J., Sadelnikova S.E., Baker B.J., Gilmour D.J., Bonete M.J., Pire C., Esclapez J. and Rice D.W. 2001. Crystallization and preliminary X-ray analysis of glucose dehydrogenase from Haloferax mediterranei. Acta Crystallographica D57, 18871889.

    Google Scholar 

  • Galinski E.A. 1993. Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection. Experientia 49, 487–496.

    Article  CAS  Google Scholar 

  • Galinski E.A. 1995. Osmoadaptation in bacteria. Advan Microbiol Physiol. 37, 273–328.

    Article  CAS  Google Scholar 

  • Galinski E.A. and Herzog R.M. 1990. The role of trehalose as a substitute for nitrogencontaining compatible solutes (Ectothiorhodospira halochloris). Arch Microbiol. 153, 607–613.

    Article  CAS  Google Scholar 

  • Gandbhir M., Rashed I., Marlière P. and Mutzel R. 1995. Convergent evolution of amino acid usage in archaebacterial and eubacterial lineages adapted to high salt. Res Microbiol. 146, 113–120.

    Article  PubMed  CAS  Google Scholar 

  • Gochnauer M.B. and Kushner D.J. 1969. Growth and nutrition of extremely halophilic bacteria. Can J Microbiol. 15, 1157–1165.

    Article  PubMed  CAS  Google Scholar 

  • Guixa-Boixareu N., Calderón-Paz J.I., Heldal M., Bratbak G. and Pedrós-Alió C. 1996. Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquatic Microbial Ecol. 11, 215–227.

    Article  Google Scholar 

  • Heldal M., Norland S. and Tumyr O. 1985. X-ray microanalytic method for measurement of dry matter and elemental content of individual bacteria. Appl Environm Microbiol. 50, 1251–1257.

    CAS  Google Scholar 

  • Hochstein L.I. 1978. Carbohydrate metabolism in the extremely halophilic bacteria: the role of glucose in the regulation of citrate synthase activity. In Caplan S.R. and Ginzburg M. (Eds.), Energetics and structure of halophilic microorganisms (pp. 397–412 ). Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Hollen B.J., Bagaley D.R., Small A.M., Oren A., McKay C.P. and Rainey F.A. 2003. Investigation of the microbial community of the salt surface layer at Badwater, Death Valley National Park. Abstract, ASM annual meeting, Washington, D.C.

    Google Scholar 

  • Holmes P.K. and Halvorson H.O. 1965. Properties of a purified halophilic malic dehydrogenase. J Bacteriol. 90, 316–326.

    PubMed  CAS  Google Scholar 

  • Javor B. 1989. Hypersaline environments. Microbiology and biogeochemistry. Springer-Verlag, Berlin.

    Google Scholar 

  • Johnsen U., Selig M., Xavier K.B., Santos H. and Schönheit P. 2001. Different glycolytic pathways for glucose and fructose in the halophilic archaeon Halococcus saccharolyticus. Arch Microbiol. 175, 52–61.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan G. and Altekar W. 1991. An unusual class I (Schiff base) fructose-1,6-bisphosphate aldolase from the halophilic archaebacterium Haloarcula vallismortis. Europ J Biochem. 195, 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Lanyi J.K. 1974. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev. 38, 272–290.

    PubMed  CAS  Google Scholar 

  • Litchfield C.D., Irby A. and Vreeland R.H. 1999. The microbial ecology of solar salt plants. In A. Oren (Ed.), Microbiology and biogeochemistry of hypersaline environments, pp. 3952. CRC Press, Boca Raton.

    Google Scholar 

  • Lutna;s B.F., Oren A. and Liaaen-Jensen S. 2002. New Coo-carotenoid acyl glycoside as principal carotenoid of Salinibacter ruber, an extremely halophilic eubacterium. J Nat Prod. 65, 1340–1343.

    Google Scholar 

  • Madan A. and Sonawat H.P. 1996. Glucose dehydrogenase from Halobacterium salinarium: purification and salt dependent stability. Physiol Chem Physics Medic NMR 28, 15–28.

    CAS  Google Scholar 

  • Madigan M.T. and Oren A. 1999. Thermophilic and halophilic extremophiles. Curr Opin Microbiol. 2, 265–269.

    Article  PubMed  CAS  Google Scholar 

  • Matheson A.T., Sprott G.D., McDonald I.J. and Tessier H. 1976. Some properties of an unidentified halophile: growth characteristics, internal salt concentrations, and morphology. Can J Microbiol. 22, 780–786.

    Article  PubMed  CAS  Google Scholar 

  • Mevarech M. and Neumann E. 1977. Malate dehydrogenase isolated from extremely halophilic bacteria of the Dead Sea. 2. Effect of salt on the catalytic activity and structure. Biochem. 16, 3786–3792.

    Article  CAS  Google Scholar 

  • Ng W.V., Kennedy S.P., Mahairas G.G., Berquist B., Pan M., Shukla H D, Lasky S.R., Baliga N.S., Thorsson V., Sbrogna J., Swartzell S., Weir D., Hall J., Dahl T.A., Welti R., Goo Y.A., Leithauser B., Keller K., Cruz R., Danson M.J., Hough D.W., Maddocks D.G., Jablonski P.E., Krebs M.P., Angevine C.M., Dale H., Isenberger T.A., Peck R.F., Pohlschroder M., Spudich J.L., Jong K.-H., Alam M., Freitas T., Hou S., Daniels C.J., Dennis P.P., Omer A.D., Ebhardt H., Lowe T.M., Liang P., Riley M., Hood L. and DasSarma S. 2000. Genome sequence of Halobacterium species NRC-1. Proc Nati Acad Sci USA 97, 12176–12181.

    Article  CAS  Google Scholar 

  • Norland S., Fagerbakke K.M. and Heldal M. 1995. Light element analysis of individual bacteria by X-ray microanalysis. Appl Environm Microbiol. 61, 1357–1362.

    CAS  Google Scholar 

  • Oren A. 1986. Intracellular salt concentrations of the anaerobic halophilic eubacteria Haloanaerobium praevalens and Halobacteroides halobius. Can J Microbiol. 32, 4–9.

    Article  CAS  Google Scholar 

  • Oren A. 1990a. Estimation of the contribution of halobacteria to the bacterial biomass and activity in a solar saltern by the use of bile salts. FEMS Microbiol Ecol. 73, 41–48.

    Article  CAS  Google Scholar 

  • Oren A. 1990b. The use of protein synthesis inhibitors in the estimation of the contribution of halophilic archaebacteria to bacterial activity in hypersaline environments. FEMS Microbiol Ecol. 73, 187–192.

    Article  CAS  Google Scholar 

  • Oren A. 1993. Ecology of extremely halophilic microorganisms. In R.H. Vreeland L.1. Hochstein (Eds.), The biology of halophilic bacteria, pp. 25–53. CRC Press, Boca Raton.

    Google Scholar 

  • Oren A. 1995. Comment on “Convergent evolution of amino acid usage in archaebacterial and eubacterial lineages adapted to high salt”, by M. Gandbhir et al. (Res. Microbiol. 1995, 146, 113–120). Res Microbiol. 146, 805–806.

    Article  PubMed  CAS  Google Scholar 

  • Oren A. 1999a. Bioenergetic aspects of halophilism. Microbiol Molec Biol Rev. 63, 334–348.

    CAS  Google Scholar 

  • Oren A. 1999b. The halophilic Archaea–evolutionary relationships and adaptation to life at high salt concentrations. In S.P. Wasser (Ed.), Evolutionary theory and processes: modern perspectives. Papers in honour of Eviatar Nevo, pp. 345–361. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Oren A. 2000. The order Halobacteriales. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, E. Stackebrandt (Eds.), The Prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. 3rd. ed. (electronic publication; release 3. 2 ). Springer-Verlag, New York.

    Google Scholar 

  • Oren A. 2002a. Halophilic microorganisms and their environments. Kluwer Scientific Publishers, Dordrecht.

    Book  Google Scholar 

  • Oren A. 2002b. Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol Ecol. 39, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Oren A. and Gurevich P. 1993. The fatty acid synthetase complex of Haloanaerobium praevalens is not inhibited by salt. FEMS Microbiol Letters 108, 287–290.

    Article  CAS  Google Scholar 

  • Oren A. and Gurevich P. 1994. Distribution of glycerol dehydrogenase and glycerol kinase in halophilic archaea. FEMS Microbiol Letters 118, 311–316.

    Article  CAS  Google Scholar 

  • Oren A. and Mana L 2002. Amino acid composition of bulk protein and salt relationships of selected enzymes of Salinibacter ruber, an extremely halophilic bacterium. Extremophiles 6, 217–223.

    Article  PubMed  CAS  Google Scholar 

  • Oren A. and Mana L. 2003. Sugar metabolism in the extremely halophilic bacterium Salinibacter ruber. FEMS Microbiol Letters 223, 83–87.

    Article  CAS  Google Scholar 

  • Oren A., Heldal M. and Norland S. 1997. X-ray microanalysis of intracellular ions in the anaerobic halophilic eubacterium Haloanaerobium praevalens. Can J Microbiol. 43, 588592.

    Google Scholar 

  • Oren A., Heldal M., Norland S. and Galinski E.A. 2002. Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber. Extremophiles 6, 491–498.

    Article  PubMed  CAS  Google Scholar 

  • Oren A. and Rodriguez-Valera F. 2001. The contribution of Salinibacter species to the red coloration of saltem crystallizer ponds. FEMS Microbiol Ecol. 36, 123–130.

    PubMed  CAS  Google Scholar 

  • Oren A., Rodriguez-Valera F., Anton J., Benlloch S., Rosselló-Mora R., Amami R , Coleman J. and Russell N.J. 2003. Red, extremely halophilic, but not archaeal: the physiology and ecology of Salinibacter ruber,a bacterium isolated from saltem crystallizer ponds. In A. Ventosa (Ed.), Halophilic microorganisms. Springer-Verlag, Berlin (in press).

    Google Scholar 

  • Pedrós-Alió C., Calderón-Paz J.I., MacLean M.H., Medina G., Marassé C., Gasol J.M. and Guixa-Boixereu N. 2000. The microbial food web along salinity gradients. FEMS Microbiol. Ecol. 32, 143–155.

    Google Scholar 

  • Pérez-Fillol M. and Rodriguez-Valera F. 1986. Potassium ion accumulation in cells of different halobacteria. Microbiologia 2, 73–80.

    PubMed  Google Scholar 

  • Pugh E.L. and Kates M. 1994. Acylation of proteins of the archaebacteria Halobacterium cutirubrum and Methanobacterium thermoautotrophicum. Biochimica et Biophysica Acta 1196, 38–44.

    Article  PubMed  CAS  Google Scholar 

  • Pugh E.L., Wassef M.K. and Kates M. 1971. Inhibition of fatty acid synthetase in Halobacterium cutirubrum and Escherichia coli by high salt concentrations. Can J Biochem. 49, 953–958.

    Article  PubMed  CAS  Google Scholar 

  • Rawal N., Kelkar S.M. and Altekar W. 1988. Alternative routes of carbohydrate metabolism in halophilic archaebacteria. Ind J Biochem Biophys. 25, 674–686.

    CAS  Google Scholar 

  • Rengpipat S., Lowe S.E. and Zeikus J.G. 1988. Effect of extreme salt concentrations on the physiology and biochemistry of Halobacteroides acetoethylicus. J Bacteriol. 170, 30653071.

    Google Scholar 

  • Richard S.B., Madem D., Garcin E. and Zaccai G. 2000. Halophilic adaptation: novel solvent protein interactions observed in the 2.9 and 2.6 A resolution structures of the wild type and a mutant of malate dehydrogenase from Haloarcula marismortui. Biochem. 39, 992–1000.

    Article  CAS  Google Scholar 

  • Rodriguez-Valera F., Ruiz-Berraquero F. Ramos-Cormenzana A. 1980. Behaviour of mixed populations of halophilic bacteria in continuous culture. Can J Microbiol. 26, 1259–1263.

    Google Scholar 

  • Rodriguez-Valera F., Ruiz-Berraquero F. and Ramos-Cormenzana A. 1981. Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microbi Ecol. 7, 235–243.

    Article  Google Scholar 

  • Rodriguez-Valera F., Ventosa A., Juez G. and Imhoff J.F. 1985. Variation of environmental features and microbial populations with salt concentrations in a multipond saltem. Microbial Ecol. 11, 107–115.

    Article  CAS  Google Scholar 

  • Sako Y., Takai K., Ishida Y., Uchida A. and Katayama Y. 1996. Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic bacteria. Int J Syst Bacteriol. 46, 1099 1104.

    Google Scholar 

  • Silva, Z., Borges, N., Martins, L.O., Wait, R., da Costa, M.S., Santos, H. 1999. Combined effect of the growth temperature and salinity of the medium on the accumulation of compatible solutes by Rhodothermus marinus and Rhodothermus obamensis. Extremophiles, 3, 163–172.

    Article  PubMed  CAS  Google Scholar 

  • Silva Z., Horta C., da Costa M.S., Chung A.P. and Rainey F.A. 2000. Polyphasic evidence for the reclassification of Rhodothermus obamensis Sako et al. 1966 as a member of the species Rhodothermus marinus Alfredsson et al. 1988. Int J Syst Evol Microbiol. 50, 1457–1461.

    Article  PubMed  CAS  Google Scholar 

  • Sonawat H.M., Srivasta R., Swaminathan S. and Govil G. 1990. Glycolysis and EntnerDoudoroff pathways in Halobacterium halobium: Some new observations based on 13C NMR spectroscopy. Biochem Biophys Res Comm. 173, 358–362.

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson G.A. Hochstein L.I. 1972. Studies on acid production during carbohydrate metabolism by extremely halophilic bacteria. Can J Microbiol. 18, 1973–1976.

    Google Scholar 

  • Tomlinson G.A., Koch T.K. and Hochstein L.I. 1974. The metabolism of carbohydrates by extremely halophilic bacteria: glucose metabolism via a modified Entner-Doudoroff pathway. Can J Microbiol. 20, 1085–1091.

    Article  CAS  Google Scholar 

  • Ventosa A., Nieto J.J. and Oren A. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev. 62, 504–544.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Oren, A. (2004). Convergent Evolution in Extremely Halophilic Prokaryotes: A Comparison Between Salinibacter Ruber (Bacteria) and the Halobacteriaceae (Archaea). In: Wasser, S.P. (eds) Evolutionary Theory and Processes: Modern Horizons. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0443-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0443-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6457-8

  • Online ISBN: 978-94-017-0443-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics