Skip to main content

Red, distasteful water mites: did fish make them that way?

  • Chapter
Aquatic Mites from Genes to Communities

Abstract

Water mites (Acari: Hydrachnida) are unusual among the typically cryptic freshwater fauna in that many species are brightly colored red or orange, and also appear to be distasteful to fish. This apparent aposematism (use of color to warn predators) has been previously explained as the evolutionary end-product of pressure from fish predation. The fish-predation argument has been supported by observations that fish spit out red mites, powder made from red water mites is more distasteful to fish than powder made from non-red mites, and red mites appear to be more abundant than non-red mites in water bodies where fish are present. In this paper, we challenge the hypothesis that fish were the sole driving force behind the evolution of aposematism in water mites. We show that non-red mites actually dominate in water bodies with fish, and that red mites are more abundant in temporary, fishless water bodies. We also demonstrate that powder made from red, terrestrial velvet mites (Trombidiidae) was as distasteful to fish as powder made from red water mites. We suggest that the main role of red and orange carotenoid pigments may be to act as photoprotectants, and hypothesize that redness originated in the terrestrial ancestors of water mites and has been retained in certain lineages of water mites after the invasion of the aquatic habitat. We also suggest that distastefulness evolved subsequent to bright coloration in response to increased conspicuousness to predators. Relaxed selection for redness has occurred when adults and/or larvae are less exposed to sunlight, either through occupying more protected habitats, parasitizing more nocturnal hosts, or parasitizing hosts for a short period of time. Our ability to test this alternative hypothesis is hampered by lack of knowledge of the source and mode of action of distastefulness, and of phylogenetic relationships among the Parasitengona.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberti G. and Coos L.B. 1999. Acari: mites. In: Harrison F.W. and Foelix R.F. (eds), Microscopic Anatomy of Invertebrates, Vol. 8C. Wiley-Liss, New York.

    Google Scholar 

  • Ang H.P. and Newman L.J. 1998. Warning colouration in pseudocerotid flatworms (Platyhelminthes, Polycladida). A preliminary study. Hydrobiologia 383: 29–33.

    Article  Google Scholar 

  • Chalker-Scott L. 1995. Survival and sex ratios of the intertidal copepod, Tigriopus californicus, following ultra-violet-B (290–320 nm) radiation exposure. Mar. Biol. 123: 799–804.

    Article  Google Scholar 

  • Chen P.S. 1984. The functional morphology and biochemistry of insect male accessory glands and their secretions. Annu. Rev. Entomol. 29: 233–255.

    Article  CAS  Google Scholar 

  • Czeczuga B. and Czerpak R. 1968a. Pigments occurring in Hydrachna geographica and Piona nodata (Hydracarina, Arachnoidea). Specialia 24: 218–219.

    CAS  Google Scholar 

  • Czeczuga B. and Czerpak R. 1968b. The presence of carotenoids in Eylais hamata (Koenike 1897 ) (Hydracarina, Arachnoidea). Comp. Biochem. Physiol. 24: 37–46.

    Google Scholar 

  • Czeczuga B. and Czerpak R. 1968c. Carotenoids in Hydryphantes dispar (Schaub, 1988 ) (Hydracarina, Arachnoidea). Comp. Biochem. Physiol. 25: 547–552.

    Google Scholar 

  • Elton C.S. 1923. On the colouration of water mites. Proc. Zool. Soc. 82: 1231–1239.

    Google Scholar 

  • Dalyell J.G. 1851. The Powers of the Creator Displayed in the Creation; or, Observations on Life

    Google Scholar 

  • Amidst the Various Forms of the Humbler Tribes of Animated Nature: with Practical Comments and Illustrations, Vol. 1. John van Voorst, London, UK.

    Google Scholar 

  • Douglas R.H. and Djamgoz M.B.A. 1990. The Visual System of Fish. Chapman und Hall, New York, USA.

    Google Scholar 

  • Eckert R., Randall D. and Augustine G. 1988. Animal Physiology: Mechanisms and Adaptations. 3rd ed. W.H. Freeman and Company, New York.

    Google Scholar 

  • Fox E., Shotton K. and Ulrich C. 1995. SigmaStat Statistical Software User’s Manual. Jandel Corporation, San Rafael, CA.

    Google Scholar 

  • Garga N.G. 1996. Aposematism in water mites (Acari: Hydracarina): a predator defense mechanism, a phylogenetic hold-over, and protection from damaging light. M.Sc. thesis, Queen’s University, Kingston, Ontario.

    Google Scholar 

  • Goodwin T.W. 1984. The Biochemistry of the Carotenoids: 1984, Vol. II. Animals. Chapman und Hall, London.

    Book  Google Scholar 

  • Green J. 1964. Pigments of the hydracarine Eylais extendens (Acari: Hydrachnellae). Comp. Biochem. Physiol. 13: 469–472.

    Article  CAS  Google Scholar 

  • Guilford T. and Cuthill I. 1991. The evolution of aposematism in marine gastropods. Evolution 45: 449–451.

    Article  Google Scholar 

  • Guilford T. and Dawkins M. 1993. Are warning colours handicaps? Evolution 47: 400–416. Hairston N.G. Jr. I979a. The effect of temperature on carotenoid photoprotection in the copepod Diaptomus nevadensis. Comp. Biochem. Physiol. 62: 445–448.

    Google Scholar 

  • Hairston N.G. Jr. 1979b. The relationship between pigmentation and reproduction in two species of Diaptomus (Copepoda). Limnol. Oceanogr. 24: 38–44.

    Google Scholar 

  • Hairston N.G. Jr. 1980. The vertical distribution of diaptomid copepods in relation to body pigmentation. In: Kerfoot W.C. (ed.), Evolution and Ecology of Zooplankton Communities. The University Press of New England, Hanover, pp. 98–110.

    Google Scholar 

  • Hairston N.G. Jr. 1981. The interaction of salinity, predators, light and copepod color. Hydro-biologia 81: 151–158.

    Article  Google Scholar 

  • Harvey M.S. 1998. The Australian Water Mites: A Guide to Families and Genera. Monographs on Invertebrate Taxonomy 4. CSIRO Publishing, Collingwood.

    Google Scholar 

  • Huhta E., Rytkönen S. and Solonen T. 2003. Plumage brightness of prey increases predation risk: an among-species comparison. Ecology 84: 1793–1799.

    Article  Google Scholar 

  • Joron M. 2003. Aposematic coloration. In: Resh V.H. and Cardé R.T. (eds), Encyclopedia of Insects. Academic Press, Amsterdam, pp. 39–45.

    Google Scholar 

  • Kerfoot W.C. 1982. A question of taste: crypsis and warning coloration in freshwater zooplankton communities. Ecology 63: 538–554.

    Article  Google Scholar 

  • Krantz G.W. 1978. A Manual of Acarology, 2nd ed. Oregon State University Book Stores, Inc. Corvallis, USA.

    Google Scholar 

  • Leimar O., Enquist M. and Sillén-Tullberg B. 1986. Evolutionary stability of aposematic colouration and prey uprofitability: a theoretical analysis. Am. Nat. 128: 469–490.

    Google Scholar 

  • Lindström L. 1999. Experimental approaches to studying the initial evolution of conspicuous aposematic signalling. Evol. Ecol. 13: 605–6618.

    Article  Google Scholar 

  • Luecke C. and O’Brien W.J. 1981. Phototoxicity and fish predation: selective factors in color morphs of Heterocope. Limnol. Oceanogr. 26: 454–460.

    Article  Google Scholar 

  • Manunta C. 1939. Estraazione e cristallizzazione del pigmento the colora in rosso la pelle di certi acari del genere Trombidium. HeIv. Chim. Acta. 22: 1154–1155.

    Article  CAS  Google Scholar 

  • Merilaita S. and Kaitala V. 2002. Community structure and the evolution of aposematic coloration. Ecol. Lett. 5: 495–501.

    Article  Google Scholar 

  • Metcalf R.L. and Newell I.M. 1962. Investigation of the biochromes of mites. Ann. Entomol. Soc. Am. 55: 350–353.

    CAS  Google Scholar 

  • Meyer E. and Kabbe K. 1991. Pigmentation in water mites of the genera Limnochares Latr. and Hydrodroma Koch (Hydrachnidia). In: Schuster R. and Murphy P.W. (eds), The Acari: Reproduction, Development and Life-History Strategies. Chapman und Hall, New York, USA, pp. 379–391.

    Google Scholar 

  • Mitchell R. 1964. The anatomy of an adult chigger mite Blankaartia acuscutellaris (Watch). J. Morphol 114: 373–391.

    Article  PubMed  CAS  Google Scholar 

  • Nadchatram M. 1970. Correlation of habitat, environment and color of chiggers, and their potential significance in the epidemiology of scrub typhus in Malaya (Prostigmata: Trombiculidae). J. Med. Entomol. 7: 131–144.

    PubMed  CAS  Google Scholar 

  • N.H. Analytical Software. 1989. Statistix 3. 1. Roseville, Minnesota.

    Google Scholar 

  • Otto J.C. and Wilson K.J. 2001. Assessment of the usefulness of ribosomal 18S and mitochondrial COI sequences in prostigmata phylogeny. In: Halliday R.B., Walter D.E., Proctor H.C., Norton R.A. and Colloft M.J. (eds), Acarology: Proceedings of the 10th International Congress. CSIRO Publishing, Melbourne, pp. 100–109.

    Google Scholar 

  • Pearse V., Pearse J., Buchsbaum M. and Buchsbaum R. 1987. Living Invertebrates. Blackwell Scientific Publications, Pacific Grove.

    Google Scholar 

  • Pennak R.W. 1976. Fresh-water Invertebrates of the United States, 2nd ed. John Wiley und Sons, New York.

    Google Scholar 

  • Ringelberg J., Keyser A.L. and Flik B.J.G. 1984. The mortality effect of ultraviolet radiation in a translucent and in a red morph of Acanthodiaptomus denticornis ( Crustacea, Copepoda) and its possible ecological relevance. Hydrobiologia 112: 217–222.

    Google Scholar 

  • Schmidt U. 1935. Beiträge zur anatomie und histologie der hydracarinen, besonders von Diplodontus despiciens. O.F. Müller. Zeit. Morph. Ökol. Tiere 30: 99–176.

    Article  Google Scholar 

  • Scott W.B. and Crossman E.J. 1973. Freshwater Fishes of Canada. Fisheries and Research Board of Canada, Bulletin 184, Information Canada, Ottawa.

    Google Scholar 

  • Sillén-Tullberg B. 1988. Evolution of gregariousness in aposematic butterfly larvae: a phylogenetic analysis. Evolution 42: 293–305.

    Article  Google Scholar 

  • Smith B.P. 1990. Hydrachnidia. In: Peckarsky B.L., Fraissinet P.R., Penton M.A. and Conklin D.J. (eds), Freshwater Macroinvertebrates of Northeastern North America. Cornell University Press, Ithaca, pp. 290–334.

    Google Scholar 

  • Smith I.M., Cook D.R. and Smith B.P. 2001. Water mites (Hydrachnida) and other arachnids. In: Thorp J.H. and Covich A.P. (eds), Ecology and Classification of North American Freshwater Invertebrates, 2nd ed. Academic Press, San Diego, pp. 551–659.

    Chapter  Google Scholar 

  • Söller R., Wohltmann A., Witte H. and Blohm D. 2001. Phylogenetic relationships within terrestrial mites (Acari: Prostigmata, Parasitengona) inferred from comparative DNA sequence analysis of the mitochondria) cytochrome oxidase subunit I gene. Mol. Phylogenet. Evo1. 18: 4753.

    Google Scholar 

  • Summers K. and Clough M.E. 2001. The evolution of coloration and toxicity in the poison frog family (Dendrobatidae). Proc. Natl. Acad. Sci. 98: 6227–6232.

    Article  PubMed  CAS  Google Scholar 

  • Tullberg B.S. and Hunter A.F. 1996. Evolution of larval gregariousness in relation to repellent defences and warning coloration in tree-feeding Macrolepidoptera: a phylogenetic analysis based on independent contrasts. Biol. J. Linn. Soc. 57: 253–276.

    Article  Google Scholar 

  • Tullberg B.S., Leimar O. and Stille G. 2000. Did aggregation favour the initial evolution of warning coloration? A novel world revisited Anim. Behay. 59: 281–287.

    Article  Google Scholar 

  • Turner J.R.G. 1971. Studies of Müllerian mimicry and its evolution in burnet moths and heliconid butterflies. In: Creed R. (ed.), Ecological Genetics and Evolution. Blackwell Publishing, Oxford, pp. 224–260.

    Chapter  Google Scholar 

  • Welbourn W.C. 1991. Phylogenetic studies of the terrestrial Parasitengona. In: Dusbabek F. and Bukva V. (eds), Modern Acarology, Vol. 2. SPB Academic Publishing by, The Hague, The Netherlands, pp. 163–170.

    Google Scholar 

  • Witte H. 1991. The phylogenetic relationships within the Parasitengonae. In: Dusbabek F. and Bukva V. (eds), Modern Acarology, Vol. 2. SPB Academic Publishing by, The Hague, The Netherlands, pp. 171–182.

    Google Scholar 

  • Zar J.H. 1996. Biostatistical Analysis, 3rd ed. Prentice Hall International, Inc., Upper Saddle River, NJ.

    Google Scholar 

  • Zhang Z.-Q. 1998. Biology and ecology of trombidiid mites (Acari: Trombidioidea). Exp. Appl. Acarol. 22: 139–155.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Proctor, H.C., Garga, N. (2004). Red, distasteful water mites: did fish make them that way?. In: Proctor, H.C. (eds) Aquatic Mites from Genes to Communities. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0429-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0429-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6710-4

  • Online ISBN: 978-94-017-0429-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics