Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 72))

Abstract

The experimental literature on collapsible tubes is reviewed with reference to historical landmarks, ways of measuring important variables, the main observed phenomena, and the applications in medical therapy and technology. Mechanistic phenomena covered include transitions to and from supercritical flow, prediction of the onset of oscillation, flow-rate limitation, and the collapsible tube as a nonlinear dynamical system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Conrad, W. A. (1969) Pressure-flow relationships in collapsible tubes, IEEE Transactions on Bio-Medical Engineering 16(4), 284–295.

    Article  MathSciNet  Google Scholar 

  2. Brecher, G. A. (1956) Venous Return (Grune & Stratton, New York).

    Google Scholar 

  3. Patterson, S. W. & Starling, E. H. (1914) On the mechanical factors which determine the output of the ventricles, Journal of Physiology 48, 357–379.

    Google Scholar 

  4. Holt, J. P. (1941) The collapse factor in the measurement of venous pressure — the flow of fluid through collapsible tubes, American Journal ofPhysiology 134, 292–299.

    Google Scholar 

  5. Duomarco, J. L., Recarte, P. & Rimini, R. (1944) Influencia de las presiones abdominal y torácica sobre el retomo venoso en la cava inferior, Revista Argentina de Cardiologia 11, 286–295 (cited by Brecher, 1956).

    Google Scholar 

  6. Brecher, G. A. (1952) Mechanism of venous flow under different degrees of aspiration, American Journal of Physiology 169, 423–433.

    Google Scholar 

  7. Guyton, A. C. & Adkins, L. H. (1954) Quantitative aspects of the collapse factor in relation to venous return, American Journal of Physiology 177, 523–527.

    Google Scholar 

  8. Fry, D. L., Ebert, R. V., Stead, W. W. & Brown, C. C. (1954) The mechanics of pulmonary ventilation in normal subjects and in patients with emphysema, American Journal of Medicine 16, 80–97.

    Article  Google Scholar 

  9. Rodbard, S. & Saiki, H. (1953) Flow through collapsible tubes, American Heart Journal 46, 715–725.

    Article  Google Scholar 

  10. Rodbard, S. (1966) A hydrodynamic mechanism for autoregulation of flow, Cardiologia 48, 532–535.

    Article  Google Scholar 

  11. Fung, Y. C. (1984) Biodynamics - Circulation (Springer-Verlag, New York).

    Google Scholar 

  12. Brower, R. W. (1970) Pressure-flow characteristics of collapsible tubes. Unpublished Ph.D., University of Pennsylvania.

    Google Scholar 

  13. Brower, R. W. & Noordergraaf, A. (1973) Pressure-flow characteristics of collapsible tubes: a reconciliation of seemingly contradictory results, Annals of Biomedical Engineering1, 333–355.

    Article  Google Scholar 

  14. Brower, R. W. & Noordergraaf, A. (1978) Theory of steady flow in collapsible tubes and veins, in Cardiovascular System Dynamics, eds. Baan, J., Noordergraaf, A. &; Raines, J. (MIT Press), pp. 256–265.

    Google Scholar 

  15. Thiriet, M., Naili, S., Langlet, A. & Ribreau, C. (2001) Flow in thin-walled collapsible tubes, in Biofluid Methods in Vascular and Pulmonary Systems, ed. Leondes, C. T., Vol. 4 of Biomechanical Systems: Techniques and Applications (CRC Press).

    Google Scholar 

  16. Païdoussis, M. P. (in press) Thin shells containing or immersed in flow, in Fluid-Structure Interactions: Slender Structures and Axial Flow, Vol. 2 (Academic Press, San Diego).

    Google Scholar 

  17. Weissman, M. & Mockros, L. (1967) The mechanics of a collapsing tube heart pump, International Journal of Mechanical Science 9, 113–121.

    Article  Google Scholar 

  18. Flaud, P., Oddou, C. & Geiger, D. (1985) High-amplitude wave propagation in collapsible tube. I. — Relation between rheological properties and wave propagation, Journal de Physique 46 (5), 691–698.

    Article  Google Scholar 

  19. Sakurai, A. & Ohba, K. (1986) Self-excited oscillation of flow in collapsible tube. III (A resonant oscillation of air flow), Technology Reports of Kansai University 27, 41–48.

    Google Scholar 

  20. Yamane, T. & Orita, T. (1994) Relationship of pressure wave velocity to self-excited oscillation of collapsible tube flow, JSME International Journal Series A 37 (1), 71–78.

    Article  Google Scholar 

  21. Bassez, S., Flaud, P. & Chauveau, M. (2001) Modeling of the deformation of flexible tubes using a single tube law: application to veins of the lower limb in man, ASME Journal of Biomechanical Engineering 123, 58–65.

    Article  Google Scholar 

  22. Bertram, C. D. (1987) The effects of wall thickness, axial strain and end proximity on the pressure-area relation of collapsible tubes, Journal of Biomechanics 20, 863–876.

    Article  Google Scholar 

  23. Bertram, C. D., Gow, B. S. & Greenwald, S. E. (1997) Comparison of different methods for the determination of the true wave propagation coefficient, in rubber tubes and the canine thoracic aorta, Medical Engineering and Physics 19 (3), 212–222.

    Article  Google Scholar 

  24. Bonis, M. & Ribreau, C. (1977) Pressure-flow relationships in collapsible tubes, in Euromech 92: Cardiovascular and Pulmnonary Dynamics, pp. 459–466.

    Google Scholar 

  25. Bonis, M. & Ribreau, C. (1978) Etude de quelques propriétés de l’écoulement dans une conduite collabable, La Houille Blanche 3(4), 165–173.

    Article  Google Scholar 

  26. Ribreau, C. & Bonis, M. (1978) Propagation et écoulement dans les tubes collabables. Contribution a l’étude des vaisseaux sanguins, Journal Français de Biophysique et Médecine Nucléaire 2 (3), 153–158.

    Google Scholar 

  27. Elliott, E. A. & Dawson, S. V. (1979) Fluid velocity greater than wavespeed and the transition from supercritical to subcritical flow in elastic tubes, Medical and Biological Engineering and Computing 17, 192–198.

    Article  Google Scholar 

  28. Ohba, K., Yoneyama, N., Shimanaka, Y. & Maeda, H. (1984) Self-excited oscillation of flow in collapsible tube, Technology Reports of Kansai University 25, 1–13.

    Google Scholar 

  29. Sipkema, P. & Westerhof, N. (1989) Mechanics of a thin walled collapsible microtube, Annals of Biomedical Engineering 17, 203–217.

    Article  Google Scholar 

  30. Brower, R. W. & Scholten, C. (1975) Experimental evidence on the mechanism for the instability of flow in collapsible vessels, Medical and Biological Engineering 13, 839–845.

    Article  Google Scholar 

  31. Kekecioglu, I., McClurken, M. E., Kamm, R. D. & Shapiro, A. H. (1981) Steady, supercritical flow in collapsible tubes. Part 1. Experimental observations, Journal of Fluid Mechanics 109, 367–389.

    Article  ADS  Google Scholar 

  32. Bertram, C. D. & Butcher, K. S. A. (1992) Possible sources of discrepancy between sphygmomanometer cuff pressure and blood pressure quantified in a collapsible-tube analog, ASME Journal of Biomechanical Engineering 114, 68–77 (printer’s errata corrected in 114, 201).

    Article  Google Scholar 

  33. Jaekle, D. E., jr. (1987) Critical transitions associated with steady flow in collapsible tubes with varying wall stiffness. Unpublished S.M., Massachusetts Institute of Technology.

    Google Scholar 

  34. Bertram, C. D. & Chen, W. (2000) Aqueous flow limitation in a tapered-stiffness collapsible tube, Journal ofFluids and Structures 14(8), 1195–1214.

    Article  ADS  Google Scholar 

  35. Bertram, C. D., Sheppeard, M. D. & Jensen, O. E. (1994) Prediction and measurement of the areadistance profile of collapsed tubes during self-excited oscillation, Journal of Fluids and Structures 8, 637–660.

    ADS  Google Scholar 

  36. Bertram, C. D. & Godbole, S. A. (1995) Area and pressure profiles for collapsible tube oscillations of three types, Journal of Fluids and Structures 9, 257–277.

    Article  ADS  Google Scholar 

  37. Shimizu, M. (1992) Blood flow in a brachial artery compressed externally by a pneumatic cuff, ASME Journal ofBiomechanical Engineering 114, 78–83.

    Article  Google Scholar 

  38. Fung, Y. C. & Sobin, S. S. (1972) Pulmonary alveolar blood flow, Circulation Research 30, 470–490.

    Article  Google Scholar 

  39. Dion, B., Naili, S., Renaudeaux, J. P. & Ribreau, C. (1995) Buckling of elastic tubés: study of highly compliant device, Medical and Biological Engineering and Computing 33, 196–201.

    Article  Google Scholar 

  40. Vischer, D. (1979) Die selbsttätige Schlauchdrossel zur Gewährleistung konstanter Beckenausflüsse, Wasserwirtschaft 69(12), 371–375.

    Google Scholar 

  41. Palermo, T. & Flaud, P. (1987) Study of two or three lobe breakdown in elastic tubes, Journal de Biophysique et Biomécanique 11, 105–111.

    Google Scholar 

  42. Thiriet, M., Delpuech, C., Piroird, J. M., Magnin, I., Bonnet, J. C. & Walton, C. (1987) Banc de mesure optique de la déformation de conduites souples, Innovation et Technologie en Biologie et Médecine 8(1), 99–107.

    Google Scholar 

  43. Elad, D., Sahar, M., Einav, S., Avidor, J. M., Zeltser, R. & Rosenberg, N. (1989) A novel non-contact technique for measuring complex surface shapes under dynamic conditions, Journal of Physics E: Scientific Instruments 22, 279–282.

    Article  ADS  Google Scholar 

  44. Elad, D., Sahar, M., Avidor, J. M. & Einav, S. (1992) Steady flow through collapsible tubes: measurements of flow and geometry, ASME Journal of Biomechanical Engineering 114(1), 84–91.

    Article  Google Scholar 

  45. Nahmias, J. (1978) Collapsible ducts cross section and linear head drop. In Digest of the 1 st International Conference on Mechanics in Medicine and Biology, Aachen, Germany, 1978), ed. Reul, H., pp. 260–263. Baden-Baden: Verlag Gerhard Witzstrock.

    Google Scholar 

  46. Nahmias, J. (1980) Unpublished Thèse de Troisième Cycle, Université Paris VI.

    Google Scholar 

  47. Bertram, C. D. & Ribreau, C. (1989) Cross-sectional area measurement in collapsed tubes using the transformer principle, Medical and Biological Engineering and Computing 27, 357–364.

    Article  Google Scholar 

  48. Ribreau, C., Merle, D. & Bonis, M. (1986) Determination expérimentale du module d’Young transversal d’une conduite élastique en dépression lors de son aplatissement, conditions d’application aux veines, Journal de Biophysique et Biomnécanique 10, 57–62.

    Google Scholar 

  49. Kamimura, T., Ohba, K. & Bando, K. (2000) Two-dimensional numerical simulation and experiment on large deformation of collapsible tube, JSME International Journal Series C 43(4), 889–894.

    Article  ADS  Google Scholar 

  50. Bertram, C. D. & Pedley, T. J. (1983) Steady and unsteady separation in an approximately two-dimensional indented channel, Journal of Fluid Mechanics 130, 315–345.

    Article  ADS  Google Scholar 

  51. Stephanoff, K. D., Pedley, T. J., Lawrence, C. J. & Secomb, T. W. (1983) Fluid flow along a channel with an asymmetric oscillating constriction, Nature 305, 692–695.

    Article  ADS  Google Scholar 

  52. Matsuzaki, Y., Ikeda, T., Matsumoto, T. & Kitagawa, T. (1998) Experiments on steady and oscillatory flows at moderate Reynolds numbers in a quasi-two-dimensional channel with a throat, ASME Journal ofBiomechanical Engineering 120, 594–601.

    Article  Google Scholar 

  53. Ikeda, T., Matsuzaki, Y. & Sasaki, T. (1994) Separated flow in a channel with an oscillating constriction, Transactions of the Japan Society of Mechanical Engineers B 60 (571), 750–757.

    Article  Google Scholar 

  54. Matsuzaki, Y., Watanabe, M., Aomatsu, T. & Ikeda, T. (2001) Experiment on flow in a two-dimensional channel with an obstruction oscillating in high frequency: preliminary study, in Abstracts of the I UTAM Symposium on Flow in Collapsible Tubes and Past Other Highly Compliant Boundaries, 26–30 March, Warwick, England.

    Google Scholar 

  55. Ikeda, T., Heil, M., Beaugendre, H. & Pedley, T. J. (1998) Experiments on flow in a two-dimensional collapsible channel, in Abstracts of the Third World Congress of Biomechanics, (eds. Matsuzaki, Y., Nakamura, T. & Tanaka, E.), Sapporo, Japan, pp. 39.

    Google Scholar 

  56. Webster, P. M., Sawatzky, R. P., Hoffstein, V., LeBlanc, R., Hinchey, M. J. & Sullivan, P. A. (1985) Wall motion in expiratory flow limitation: choke and flutter, Journal of Applied Physiology 59, 1304–1312.

    Google Scholar 

  57. Walsh, C., Sullivan, P. A., Hansen, J. S. & Chen, L.-W. (1995) Measurement of wall deformation and flow limitation in a mechanical trachea, ASME Journal of Biomechanical Engineering 117, 146–152.

    Article  Google Scholar 

  58. Elliott, E. A. & Dawson, S. V. (1977) Test of wave-speed theory of flow limitation in elastic tubes, Journal of Applied Physiology 43(3), 516–522.

    Google Scholar 

  59. Kounanis, K. & Mathioulakis, D. S. (1999) Experimental flow study within a self oscillating collapsible tube, Journal ofFluids and Structures 13, 61–73.

    Article  ADS  Google Scholar 

  60. Bertram, C. D. & Godbole, S. A. (1997) LDA measurements of velocities in a simulated collapsed tube, ASME Journal ofBiomechanical Engineering 119, 357–363.

    Article  Google Scholar 

  61. Bertram, C. D., Muller, M., Ramus, F. & Nugent, A. H. (2001) Measurements of steady turbulent flow through a rigid simulated collapsed tube, Medical and Biological Engineering and Computing 39(4), 422–427.

    Article  Google Scholar 

  62. Bertram, C. D., Diaz de Tuesta, G. & Nugent, A. H. (2001) Laser Doppler measurements of velocities just downstream of a collapsible tube during flow-induced oscillations, ASME Journal of Biomechanical Engineering 123 (5), 493–499.

    Article  Google Scholar 

  63. Hayashi, S., Hayase, T. & Kawamura, H. (1998) Numerical analysis for stability and self-excited oscillation in collapsible tube flow, ASME Journal ofBiomechanical Engineering 120, 468–475.

    Article  Google Scholar 

  64. Ohba, K., Sakurai, A. & Oka, J. (1989) Self-excited oscillation of flow in collapsible tube. IV (Laser Doppler measurement of local flow field), Technology Reports of Kansai University 31, 1–11.

    Google Scholar 

  65. Ohba, K., Sakurai, A. & Oka, J. (1997) Laser Doppler measurement of local flow field in collapsible tube during self-excited oscillation, JSME International Journal Series C 40(4), 665–670.

    Article  ADS  Google Scholar 

  66. Shimizu, M. (1985) Characteristics of pressure-wave propagation in a compliant tube with a fully collapsed segment, Journal of Fluid Mechanics 158, 113–135.

    Article  ADS  Google Scholar 

  67. Shimizu, M. & Tanida, Y. (1983) On the mechanism of Korotkoff sound generation at diastole, Journal of Fluid Mechanics 127, 315–339.

    Article  ADS  Google Scholar 

  68. Kamm, R. D. & Shapiro, A. H. (1979) Unsteady flow in a collapsible tube subjected to external pressure or body forces, Journal of Fluid Mechanics 95, 1–78.

    Article  ADS  MATH  Google Scholar 

  69. Yamane, T., Ikeda, T. & Orita, T. (1995) Suppression of self-excited oscillatory flow in collapsible tubes (effect of rod insertion) (in Japanese), Transactions of the Japan Society of Mechanical Engineers B 61 (582), 510–516.

    Article  Google Scholar 

  70. Ohba, K., Kamimura, T., Bando, K. & Hanazono, K. (2001) Distribution of flow velocity and pressure in a largely deformed collapsible tube, in Abstracts of the IUTAM Symposium on Flow in Collapsible Tubes and Past Other Highly Compliant Boundaries, 26–30 March, University of Warwick, England.

    Google Scholar 

  71. Kamimura, T., Ohba, K., Bando, K. & Hanazono, K. (2001) Prediction of pressure distribution in highly deformed collapsible tube, JSME International Journal 44 (4), (in press).

    Google Scholar 

  72. Flaud, P., Geiger, D. & Oddou, C. (1982) Mechanical properties of collapsible tubes and propagation of large amplitude waves, in Biomechanics: Principles and Applications, eds. Huiskes, R., van Campen, D. H. & de Wijn, J. R. (Martinus Nijhoff, Den Haag), pp. 373–379.

    Chapter  Google Scholar 

  73. Lyon, C. K., Scott, J. B. & Wang, C. Y. (1980) Flow through collapsible tubes at low Reynolds numbers. Applicability of the waterfall model, Circulation Research 47, 68–73.

    Article  Google Scholar 

  74. Heil, M. (1997) Stokes flow in collapsible tubes: computation and experiment, Journal of Fluid Mechanics 353, 285–312.

    Article  ADS  MATH  Google Scholar 

  75. Griffiths, D. J. (1971) Hydrodynamics of male micturition, I. Theory and steady flow through elasticwalled tubes, Medical and Biological Engineering 9, 581–588.

    Article  Google Scholar 

  76. Flaud, P., Geiger, D. & Oddou, C. (1986) High amplitude wave propagation in collapsible tubes. II. Forerunners and high amplitude waves, Journal de Physique 47, 773–780.

    Article  Google Scholar 

  77. Jan, D. L., Kamm, R. D. & Shapiro, A. H. (1983) Filling of partially collapsed compliant tubes, ASME Journal of Biomnechanical Engineering 105, 12–19.

    Article  Google Scholar 

  78. Kamm, R. D., Elad, D., Jaekle, D. E. Jr. & Shapiro, A. H. (1991) Theory and experiments on smooth transitions through the critical state (S = 1) in collapsible tube flow, in 1991 Advances in Bioengineering (ASME Winter Annual Meeting), (ed. Vanderby, R. Jr.), Atlanta, Georgia, pp. 329–332.

    Google Scholar 

  79. Bonis, M. & Ribreau, C. (1981) Wave speed in noncircular collapsible ducts, ASME Journal of Biomechanical Engineering 103, 27–31.

    Article  Google Scholar 

  80. Bertram, C. D. & Raymond, C. J. (1991) Measurements of wave speed and compliance in a collapsible tube during self-excited oscillations: a test of the choking hypothesis, Medical and Biological Engineering and Computing 29, 493–500.

    Article  Google Scholar 

  81. Ohba, K., Aono, M., Yoneyama, N. & Sakurai, A. (1989) Flow oscillation and wave propagation in collapsible tube, in Progress and New Directions of Biomechanics, ed. Y.-C. Fung et al. (MITA Press), pp. 213–227.

    Google Scholar 

  82. Ohba, K., Yoneyama, N., Aono, M. & Sakurai, A. (1985) Self-excited oscillation of flow in collapsible tube. II (Analysis and experiment on initiation of oscillation), Technology Reports of Kansai University 26, 1–6.

    Google Scholar 

  83. Yamane, T. & Orita, T. (1992) Self-excited oscillations with and without supercritical flow in collapsible tubes, in 7th International Conference on Biomedical Engineering, 2–4 December, Singapore, pp. 502–504.

    Google Scholar 

  84. Bertram, C. D. & Elliott, N. S. J. (2001) Aqueous flow limitation in uniform collapsible tubes: multiple flow-limited flow-rates at the same pressure drop and upstream transmural pressure, in Proceedings of the ASME 2001 Bioengineering Con ference, (eds. Kamm, R. D., Schmid-Schonbein, G. W., Ateshian, G. A. & Hefzy, M. S.), Snowbird, Utah, pp. 383–384.

    Google Scholar 

  85. Bonis, M. (1979) Ecoulement visqueux permanent dans un tube collabable elliptique. Unpublished Thèse de Doctorat d’Etat, Université de Technologie de Compiègne.

    Google Scholar 

  86. Fry, D. L., Thomas, L. J. & Greenfield, J. C. (1980) Flow in collapsible tubes, in Basic Hemodynamics and its Role in Disease Processes, eds. Patel, D. J. & Vaishnav, R. N. (University Park Press, Baltimore), pp. 407–424.

    Google Scholar 

  87. Gavriely, N., Shee, T. R., Cugell, D. W. & Grotberg, J. B. (1989) Flutter in flow-limited collapsible tubes: a mechanism for generation of wheezes, Journal ofApplied Physiology 66, 2251–2261.

    Google Scholar 

  88. Kamm, R. D., Patel, N. R. & Elad, D. (1993) On the effect of flow-induced flutter on flow rate during a forced vital capacity maneuver, FASEB Journal 7 (3), A 11.

    Google Scholar 

  89. Low, H. T. & Chew, Y. T. (1991) Pressure/flow relationships in collapsible tubes: effects of upstream pressure fluctuations, Medical and Biological Engineering and Computing 29, 217–221.

    Article  Google Scholar 

  90. Low, H. T., Chew, Y. T., Winoto, S. H. & Chin, R. (1995) Pressure/flow behaviour in collapsible tube subjected to forced downstream pressure fluctuations, Medical and Biological Engineering and Computing 33, 545–550.

    Article  Google Scholar 

  91. Bertram, C. D. & Castles, R. J. (1999) Flow limitation in uniform thick-walled collapsible tubes, Journal ofFluids and Structures 13, 399–418.

    Article  ADS  Google Scholar 

  92. Bertram, C. D. & Elliott, N. S. J. (2001) Comparison of flow limitation in one tapered and two uniform collapsible tubes, in Abstracts of the IUTAM Symposium on Flow in Collapsible Tubes and Past Other Highly Compliant Boundaries, 26–30 March, Warwick, England.

    Google Scholar 

  93. Patel, N. R. (1993) A study of flow limitation and flow-induced oscillations during airflow through collapsible tubing. Unpublished B.S., Massachusetts Institute of Technology.

    Google Scholar 

  94. Gould, K. L. (1980) Dynamic coronary stenosis, American Journal of Cardiology 45, 286–292.

    Article  Google Scholar 

  95. Ku, D. N., Ziegler, M., Binns, R. L. & Stewart, M. T. (1990) A study of predicted and experimental wall collapse in models of highly stenotic arteries. In Biofluid Mechanics — Blood Flow in Large Vessels (2nd International Symposium on Biofluid Mechanics and Rheology, Munich, 1989), ed. Liepsch, D., pp. 409–415. Berlin: Springer-Verlag.

    Google Scholar 

  96. Binns, R. L. & Ku, D. N. (1989) Effect of stenosis on wall motion — a possible mechanism of stroke and transient ischemic attack, Arteriosclerosis 9, 842–847.

    Article  Google Scholar 

  97. Powell, B. E. & Ku, D. N. (1991) Contribution of flow choking to dynamic stenosis resistance, in 1991 Advances in Bioengineering (ASME Winter Annual Meeting), (ed. Vanderby, R. Jr.), December 1–6, Atlanta, Georgia, pp. 337–340.

    Google Scholar 

  98. Stergiopulos, N., Moore, J. E. Jr., Strässle, A., Ku, D. N. & Meister, J.-J. (1993) Steady flow tests and demonstration of collapse on models of compliant axisymmetric stenoses, in ASME Winter Annual Meeting, New Orleans, Louisiana.

    Google Scholar 

  99. Moore, J. E. Jr., Stergiopulos, N., Golay, X., Ku, D. N. & Meister, J.-J. (1995) Flow measurements in collapsed stenotic arterial models, in Proceedings of the 1995 ASME Bioengineering Conference, (eds. Hochmuth, R. M., Langrana, N. A. & Hefzy, M. S.), June 28-July 2, Beaver Creek, Colorado, pp. 229–230.

    Google Scholar 

  100. Siebes, M., Campbell, C. S. & D’Argenio, D. Z. (1996) Fluid dynamics of a partially collapsible stenosis in a flow model of the coronary circulation, ASME Journal of Biomechanical Engineering 118, 489–497.

    Article  Google Scholar 

  101. Rodbard, S. (1955) Flow through collapsible tubes: augmented flow produced by resistance at the outlet, Circulation 6, 280–287.

    Article  Google Scholar 

  102. Schwartz, J. S., Carlyle, P. F. & Colhn, J. N. (1979) Effect of dilation of the distal coronary bed on flow and resistance in severely stenotic coronary arteries in the dog, American Journal of Cardiology 43, 219–224.

    Article  Google Scholar 

  103. Walker, J. (1987) The Amateur Scientist — Why a fluid flows faster when a tube is pinched, Scientific American 257 (1), 86–89.

    Article  Google Scholar 

  104. Judd, R. M. & Mates, R. E. (1990) Pressure-flow relationships in partially-occluded flexible tubes. In Biofluid Mechanics — Blood Flow in Large Vessels (2nd International Symposium on Biofluid Mechanics and Biorheology, Munich, Germany, 1989), ed. Liepsch, D., pp. 417–423. Berlin: Springer-Verlag.

    Google Scholar 

  105. Bertram, C. D., Raymond, C. J. & Pedley, T. J. (1991) Application of dynamical system concepts to the analysis of self-excited oscillations of a collapsible tube conveying a flow, Journal of Fluids and Structures 5, 391–426.

    Article  ADS  Google Scholar 

  106. Bertram, C. D. & Butcher, K. S. A. (1992) A collapsible-tube oscillator is not readily enslaved to an external resonator, Journal of Fluids and Structures 6, 163–180.

    Article  ADS  Google Scholar 

  107. Elliott, N. S. J. (2000) Aqueous flow-limitation in a uniform thin-walled collapsible tube. Unpublished B.E., University of New South Wales.

    Google Scholar 

  108. Bertram, C. D. (1995) Dynamical system analyses of aperiodic flow-induced oscillations of a collapsible tube, Journal de Physique III 5, 2101–2116.

    Article  ADS  Google Scholar 

  109. Yahia, H. (1980) Stabilité des écoulements dans les systèmes comportant un tube collabable. Unpublished Thèse de Troisième Cycle, Université de Technologie de Compiègne.

    Google Scholar 

  110. Conrad, W. A., Cohen, M. L. & McQueen, D. M. (1978) Note on the oscillations of collapsible tubes, Medical and Biological Engineering and Computing 76, 211–214.

    Article  Google Scholar 

  111. Yamane, T. & Orita, T. (1994) Hysteresis and multiplicity of collapsible tube flow (in Japanese), Transactions of the Japan Society of Mechanical Engineers B 60 (571), 807–812.

    Article  Google Scholar 

  112. Yamnane, T. & Orita, T. (1990) Stability of the equilibrium for collapsible tube flows, in JSME Bioengineering Division Conference, Nagaoka.

    Google Scholar 

  113. Bertram, C. D., Raymond, C. J. & Pedley, T. J. (1990) Mapping of instabilities for flow through collapsed tubes of differing length, Journal of Fluids and Structures 4, 125–153.

    Article  ADS  Google Scholar 

  114. Bertram, C. D. & Sheppeard, M. D. (2000) Interactions of pulsatile upstream forcing with flowinduced oscillations of a collapsed tube: mode-locking, Medical Engineering and Physics 22, 29–37.

    Article  Google Scholar 

  115. Bertram, C. D. & She, J. (2000) Chaotic and mode-locked interactions between flow-induced collapsible-tube oscillation and pulsatile upstream forcing. In Stochastic and Chaotic Dynamics in the Lakes (Stochaos, Ambleside, England, 1999), eds. Broomhead, D. S., Luchinskaya, E. A., McClintock, P. V. E. & Mullin, T., pp. 510–516. Melville, NY: American Institute of Physics.

    Google Scholar 

  116. Kenner, T. (1976) Pulse-wave reflection at the collapsed segment of an artery in Riva-Rocci’s method, Pfliigers Archiv 364, 285–289.

    Article  Google Scholar 

  117. Conrad, W. A., McQueen, D. M. & Yellin, E. L. (1980) Steady pressure flow relations in compressed arteries: possible origin of Korotkoff sounds, Medical and Biological Engineering and Computing 18, 419–426.

    Article  Google Scholar 

  118. Mahrenholtz, O. (1974) Zur Pumpwirkung kollabierfähiger ventilloser Schläuche, Ingenieur-Archiv 43, 173–182.

    Article  Google Scholar 

  119. Lichtenstein, O. & Dinnar, U. (1990) Experimental analysis of pulsatile flow through elastic collapsible tubes: application to cardiac assist device, ASME Journal of Biomechanical Engineering 112, 75–79.

    Article  Google Scholar 

  120. Klapproth, P., Guldner, N. W. & Sievers, H. H. (1997) Stroke volume validation and energy evaluation for the dynamic training of skeletal muscle ventricles, International Journal of Artificial Organs 20, 580–588.

    Google Scholar 

  121. Volkart, P. U. & de Vries, F. (1985) Automatic throttle hose-new flow regulator, ASCE Journal of Irrigation and Drainage Engineering 111(3), 247–264.

    Article  Google Scholar 

  122. Sood, S., Canady, A. I. & Ham, S. D. (1999) Adjustable antisiphon shunt, Child’s Nervous System 15, 246–249.

    Article  Google Scholar 

  123. Schoendorfer, D. W. & Shapiro, A. H. (1977) The collapsible tube as a prosthetic vocal source, in Proceedings ofthe San Diego Biomedical Symposium, pp. 349–356.

    Google Scholar 

  124. Bertram, C. D., Hoogland, M. R., Li, H., Odell, R. A. & Fane, A. G. (1993) Flux enhancement in crossflow microfiltration using a collapsible-tube pulsation generator, Journal of Membrane Science 84, 279–292.

    Article  Google Scholar 

  125. Hadzismajlovic, D. E. & Bertram, C. D. (1996) A collapsible-tube pulsation generator for crossflow microfiltration: fatigue testing of silicone rubber tubes, Journal of Applied Polymer Science 61, 703–713.

    Article  Google Scholar 

  126. Hadzismajlovic, D. E. & Bertram, C. D. (1998) Flux enhancement in laminar crossflow microfiltration using a collapsible-tube pulsation generator, Journal of Membrane Science 142, 173–189.

    Article  Google Scholar 

  127. Li, H., Bertram, C. D. & Wiley, D. E. (1998) The mechanisms by which pulsatile flow affects crossflow microfiltration, AIChE Journal 44, 1950–1961.

    Article  Google Scholar 

  128. Hadzismajlovic, D. E. & Bertram, C. D. (1999) Flux enhancement in turbulent crossflow microfiltration of yeast using a collapsible-tube pulsation generator, Journal of Membrane Science 163, 123–134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bertram, C.D. (2003). Experimental Studies of Collapsible Tubes. In: Carpenter, P.W., Pedley, T.J. (eds) Flow Past Highly Compliant Boundaries and in Collapsible Tubes. Fluid Mechanics and Its Applications, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0415-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0415-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6235-2

  • Online ISBN: 978-94-017-0415-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics