Ratio of the Co-Moving Luminosity in the Jet to the Unbeamed Luminosity of Blazars

  • J. H. Fan
Part of the Astrophysics and Space Science Library book series (ASSL, volume 298)


In a relativistic beaming model, the emissions are composed of two components, namely, the boosted and the unbeamed ones. But how much is from each part is unclear. However, in the radio band, the de-beamed radio luminosity \(\left( {L_{jet}^{db}} \right)\) in the jet has been assumed to be proportional to the unbeamed luminosity (Lub) in the co-moving frame, i.e., \(f = \frac{{L_{jet}^{db}}} {{{L_{ub}}}}\). The value of the ratio, f is not easy to determine, but it is associated with the core-dominance (R), bulk velocity (β), and viewing angle (θ) . In this paper, used the beaming model, the Doppler factors, and superluminal motion (SM) velocity, the ratio, f is determined for 41 sources. Results show that f mainly satisfies, log f = −3.5 to 2 for the whole sample. If we consider BL Lacertae objects (BLs) and flat spectral radio quasars (FSRQs) separately, we found that the averaged value is log f = −1.59±0.19 for FSRQs and log f = 0.11±0.49 for BLs. This results can perhaps explain why there are emission lines and strong beaming effect in FSRQs and there is no (or very weak) emission lines in BLs.


AGN Superluminal Motion Relativistic Beaming Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Fan J.H., Xie G.Z., Wen S.L., 1996, A&AS, 116, 409ADSCrossRefGoogle Scholar
  2. Fan J.H., Cheng K.S., Zhang L., Liu C.H. 1997, A&A, 327, 947ADSGoogle Scholar
  3. Fan J.H., 1998, Acta Astrophys. Sinica, Vol. 18, No. 1, 45ADSGoogle Scholar
  4. Fan J.H., Cheng K.S., Zhang L., 2001, PASJ, 53, 201ADSGoogle Scholar
  5. Fan, J.H., 2002, PASJ, 54, L55ADSGoogle Scholar
  6. Ghisellini, G. et al. 1993, ApJ, 405, 65ADSCrossRefGoogle Scholar
  7. Hough, D.H. & Readhead, A.C. 1987, in Superluminal Radio Sources, ed. A. Zensus & T.J. Pearson (Cambridge Univ. Press), 114Google Scholar
  8. Impey, C. D., Lawrence, C. R., Tapia, S., 1991, ApJ, 375, 41ADSCrossRefGoogle Scholar
  9. Lahteenmaki, A. & Valtaoja, E. 1999, ApJ, 521, 493ADSCrossRefGoogle Scholar
  10. Orr, M.J.L., Brown, I.W.A. 1982, MNRAS, 200, 1067ADSGoogle Scholar
  11. Pearson, T. J. & Readhead, A. C. S. 1988, ApJ, 328, 114ADSCrossRefGoogle Scholar
  12. Pearson, T.J. & Zensus, J.A., 1987, in Superluminal Radio Sources, ed. A. Zensus & T.J. Pearson (Cambridge Univ. Press), 1Google Scholar
  13. Urry C.M., & Shafer, R.A., 1984, ApJ, 280, 569ADSCrossRefGoogle Scholar
  14. Urry, C. M., & Padovani, P., 1995, PASP, 107, 803ADSCrossRefGoogle Scholar
  15. Vermeulen, R.C. & Cohen M.H. 1994, ApJ, 430, 467ADSCrossRefGoogle Scholar
  16. Wills, B. J., Wills, D.; Breger, M., et al. 1992, ApJ, 398, 454ADSCrossRefGoogle Scholar
  17. Zensus, J.A. & Pearson, T.J. 1988, IAU Symp. 129, 7ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • J. H. Fan
    • 1
    • 2
    • 3
  1. 1.Center for AstrophysicsGuangzhou UniversityGuangzhouChina
  2. 2.National Astronomical Observatory, CASBeijingChina
  3. 3.CAS-PKU Astrophysical CenterBeijingChina

Personalised recommendations