Skip to main content

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 13))

Abstract

Various aspects of electron correlation are reviewed, from a statistical interpretation of the concept of electron correlation to modern methods to treat correlation effects. Popular inconsistencies in the concept of electron correlation (in part related to an inappropriate normalization) are clarified. Current claims, e.g. that ‘there is a Fermi correlation between electrons of the same spin, and no correlation between electrons of different spin’, or that the ‘Fermi hole integrates to -1’, must at least be modified. It is stressed that Fermi-correlation has more to do with the removal of self-pairing than with genuine exchange. The usefulness of correlation coefficients to describe electron correlation is pointed out. Some less-known facts are stressed, like the possibility of positive (attractive) correlation, and the extremely strong negative correlation in unnatural parity singlet states.

The importance of a formulation of the n-electron problem in Fock space is stressed, and a modern Fock space theory is presented. Excitation operators and k-particle density matrices play a central role. An important aspect of Fock-space theory is separability of operators, which is closely related to extensivity of properties. It is preferable to have a theory entirely in terms of additively separable quantities, such as e.g. the cluster amplitudes of coupled-cluster theory. While the k-particle density matrices are not additively separable (except for k=1), the cumulants of the k-particle density matrices are additively separable. These cumulants have additional attractive properties, which are likely to make them promising tools in the many-electron theory of the future. A generalization of normal ordering with respect to an arbitrary reference function is presented, that contains the traditional particle-hole formalism as a special case, namely for a single Slater determinant reference function. Related to this generalized normal ordering is a generalized Wick theorem.

Some special aspects of correlation are discussed, like democratic vs. autocratic correlation and the relation of correlation to the Born-Oppenheimer separation, the correlation in open-shell states, and the short-range correlation related to singularities in the Hamiltonian. The role of the correlation cusp, especially the slow convergence of a basis expansion, as well as their solutions are discussed.

This chapter ends with a formulation of guiding principles for a satisfactory theory of n-electron states. A state should not be parametrized with more information content than is necessary. This automatically implies linear scaling with the particle number in a molecule in terms of localized orbitals. The challenge of density functional methods is to a large extent related to its restricted information content. Finally density-matrix functional methods are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Feller, An Introduction to Probability Theory and its Elementary Applications, ( Wiley, New York, 1950 )

    Google Scholar 

  2. E. Parzen, Modern Probability Theory and its Applications, ( Wiley, New York, 1960 )

    Google Scholar 

  3. W. Kutzelnigg, G. Del Re, G. Berthier, Phys. Rev. 172, 49 (1968)

    Google Scholar 

  4. W. Kutzelnigg, Top. Curr. Chem. 41, 31 (1973)

    CAS  Google Scholar 

  5. W. Kutzelnigg, and J. D. Morgan III, J. Chem. Phys. 96, 4484 (1992)

    CAS  Google Scholar 

  6. J. D. Morgan III and W. Kutzelnigg, J. Phys. Chem. 36, 197 (1996)

    Google Scholar 

  7. P. 0. Löwdin, Adv. Chem. Phys. 22, 207 (1959)

    Google Scholar 

  8. E. R. Davidson, S. A. Hagström, S. J. Chakravorty, V. M. Umar, C. Froese-Fischer, Phys. Rev. A 44, 7071 (1991);

    CAS  Google Scholar 

  9. S. J. Chakravorty, S. R. Gwaltney, E. R. Davidson, F. A. Parpia, C. Froese-Fischer, Phys. Rev. A 47, 3649 (1993);

    CAS  Google Scholar 

  10. H. J. Silverstone and 0. Sinanoglu, J. Chem. Phys. 44, 1899, 3608 (1966);

    CAS  Google Scholar 

  11. H. J. Silverstone and 0. Sinanoglu, J. Chem. Phys. 46, 854 (1967)

    CAS  Google Scholar 

  12. D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 111, 426 (1928)

    Google Scholar 

  13. J. C. Slater, Phys. Rev. 25, 210 (1930)

    Google Scholar 

  14. V. Fock, Z. Phys. 61, 126 (1930)

    Google Scholar 

  15. P. A. M. Dirac, Proc. Cambridge Phil. Soc. 27, 240 (1931)

    Google Scholar 

  16. E. K. U. Gross, private communication

    Google Scholar 

  17. C. Edmiston and K. Ruedenberg, Rev. Mod. Phys. 35, 457 (1963);

    CAS  Google Scholar 

  18. C. Edmiston and K. Ruedenberg, J. Chem. Phys. 43, 597 (1965)

    Google Scholar 

  19. R. McWeeny, Rev. Mod. Phys. 32, 335 (1960)

    Google Scholar 

  20. V. Maslen, Proc. Phys. Soc. (London) A 69, 734 (1956);

    Google Scholar 

  21. C. A. Coulson and A. H. Neilson, Proc. Roy. Soc. (London) A 78, 831 (1961)

    CAS  Google Scholar 

  22. R. McWeeny, and W. Kutzelnigg, Int. J. Quantum Chem. 2, 187 (1968)

    Google Scholar 

  23. W. Kutzelnigg, and D. Mukherjee, J. Chem. Phys. 116, 4787 (2002)

    CAS  Google Scholar 

  24. W. Kutzelnigg, Z. Naturforsch. 18a, 1058 (1963)

    Google Scholar 

  25. T. Kato, Comm. Pure Appl. Math. 10, 151 (1957)

    Google Scholar 

  26. E. P. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933);

    CAS  Google Scholar 

  27. E. P. Wigner and F. Seitz, Phys. Rev. 46, 509 (1934)

    CAS  Google Scholar 

  28. P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930)

    Google Scholar 

  29. J. C. Slater, Phys. Rev. 81, 385 (1951);

    Google Scholar 

  30. J. C. Slater, J. Chem. Phys. 43, 228 (1965)

    Google Scholar 

  31. W. Kohn, L. S. Sham, Phys. Rev. A 140, 133 (1965)

    Google Scholar 

  32. K. E. Banyard and M. M. Mashat, J. Chem. Phys. 67, 1405 (1977);

    CAS  Google Scholar 

  33. A. J. Thakkar and V. H. Smith jr. Phys. Rev. A 23, 473 (1981);

    CAS  Google Scholar 

  34. A. J. Thakkar, Phys. Rev. A 25, 1820 (1982)

    Google Scholar 

  35. H. Froehlich, Phys. Rev. 79, 845 (1950)

    Google Scholar 

  36. W. Kutzelnigg and J. D. Morgan III Z. Phys. D 36, 197 (1996)

    CAS  Google Scholar 

  37. R. T. Pack and W. Byers Brown Pack J. Chem. Phys. 45, 556 (1966)

    CAS  Google Scholar 

  38. W. Kutzelnigg, Angew. Chem. 108 629 (1996)

    Google Scholar 

  39. W. Kutzelnigg, dto. Int. Ed. Engl. 35, 573 (1996)

    CAS  Google Scholar 

  40. F. Hund, Z. Phys. 33, 345, 855 (1925);

    CAS  Google Scholar 

  41. F. Hund, Z. Phys. Linienspektren und periodisches System der Elemente ( Springer, Berlin, 1927 )

    Google Scholar 

  42. H. N. Russell, W. F. Meggers, Sci. P. Nat. B. Std. 22, 364 (1927)

    Google Scholar 

  43. J. O. Hirschfelder and P. O. Löwdin, Mol. Phys. 2, 229 (1959);

    CAS  Google Scholar 

  44. J. O. Hirschfelder and P. O. Löwdin, Mol. Phys. 9, 491 (E) (1965)

    Google Scholar 

  45. J. Goldstone, Proc. Roy. Soc. (London) A 239, 267 (1957)

    CAS  Google Scholar 

  46. K. A. Brueckner, Phys. Rev. 97, 135 (1955);

    Google Scholar 

  47. K. A. Brueckner, Phys. Rev. 100, 36 (1955)

    Google Scholar 

  48. R. P. Feynman Phys. Rev. 76, 749, (1949);

    Google Scholar 

  49. R. P. Feynman Phys. Rev. 76, 749 (1949)

    Google Scholar 

  50. M. Gell-Mann, F. Low, Phys. Rev. 84, 350 (1951)

    CAS  Google Scholar 

  51. W. Kutzelnigg, The Many-Body Perturbation Theory of Brueckner and Goldstone in: Recent Progress in Many-Body Theories, edited by H. Kümmel and M. L. Ristig Lecture Notes in Phys. 198, 361 ( Springer, Berlin, 1984 )

    Google Scholar 

  52. W. Kutzelnigg in: Applied Many-Body Methods in Spectroscopy and Electronic Structure, edited by D. Mukherjee ( Plenum, New York, 1992 )

    Google Scholar 

  53. W. Kutzelnigg, Chem. Phys. Lett. 83, 156 (1981)

    CAS  Google Scholar 

  54. W. Kutzelnigg, J. Chem. Phys. 77, 3081 (1982)

    CAS  Google Scholar 

  55. W. Kutzelnigg and S. Koch, J. Chem. Phys. 79, 4315 (1983)

    CAS  Google Scholar 

  56. W. Kutzelnigg, J. Chem. Phys. 80, 822 (1984)

    CAS  Google Scholar 

  57. W. Kutzelnigg, Quantum Chemistry in Fock Space in: Aspects of Many-Body Effects in Molecules and Extended Systems, edited by D. Mukherjee Lecture Notes in Chemistry 50 ( Springer, Berlin, 1989 )

    Google Scholar 

  58. B. Klahn, W. A. Bingel, Theor. Chico. Acta 44, 9, 27 (1977)

    CAS  Google Scholar 

  59. D. J. Thouless, The Quantum Mechanics of Many-Body Systems (Acad. Press, New York, 1961 );

    Google Scholar 

  60. P. Nozières, Le problème à N corps (Dunod, Paris, 1963)

    Google Scholar 

  61. P. Nozières, The theory of Interacting Fermi Systems ( Benjamin, New York, 1964 );

    Google Scholar 

  62. I. Lindgren, J. Morrison, Atomic many-body theory ( Springer, Berlin, 1982 )

    Google Scholar 

  63. G. C. Wick, Phys. Rev. 80, 268 (1950)

    Google Scholar 

  64. H. Primas, Helv. Phys. Acta 34, 331 (1961);

    CAS  Google Scholar 

  65. H. Primas, Rev. Mod. Phys. 35, 710 (1963)

    Google Scholar 

  66. The Unitary Group, edited by J. Hinze Lecture Notes in Chemistry 22 ( Springer, Berlin, 1981 )

    Google Scholar 

  67. W. Kutzelnigg, J. Chem. Phys. 82, 4166 (1984)

    Google Scholar 

  68. J. Paldus and B. Jeziorski, Theor. Chim. Acta 73, 81 (1988)

    CAS  Google Scholar 

  69. W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 107, 432 (1997)

    CAS  Google Scholar 

  70. W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 110, 2800 (1999)

    CAS  Google Scholar 

  71. D. Mazziotti, Chem. Phys. Lett. 289, 419 (1998);

    CAS  Google Scholar 

  72. D. Mazziotti, Int. J. Quantum Chem. 70, 557 (1998);

    CAS  Google Scholar 

  73. D. Mazziotti, Phys. Rev. A 57, 4219 (1998);

    CAS  Google Scholar 

  74. D. Mazziotti, Phys. Rev. A 60, 4396 (1999)

    CAS  Google Scholar 

  75. R. Kubo, J. Phys. Soc. Jpn. 17, 1100 (1962)

    Google Scholar 

  76. D. Mukherjee and W. Kutzelnigg, J. Chem. Phys. 114, 2047 (2001);

    CAS  Google Scholar 

  77. D. Mukherjee and W. Kutzelnigg, Erratum 114, 8226 (2001)

    CAS  Google Scholar 

  78. D. Mukherjee, Chem. Phys. Lett. 274, 561 (1997)

    CAS  Google Scholar 

  79. W. Kutzelnigg and D. Mukherjee, Chem. Phys. Lett. 317, 567 (2000)

    CAS  Google Scholar 

  80. N. M. Hugenholtz, Physica 23, 481 (1957)

    Google Scholar 

  81. A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963)

    Google Scholar 

  82. A. J. Coleman and V. I. Yukalov, Reduced Density Matrices, Lecture Notes in Chemistry ( Springer, Berlin, 2000 )

    Google Scholar 

  83. H. Kummer, Int. J. Quantum Chem. 12, 1033 (1977)

    CAS  Google Scholar 

  84. W. Kutzelnigg and D. Mukherjee, to be published

    Google Scholar 

  85. D. C. Carlson and J. H. Keller, Phys. Rev. 121, 659 (1961)

    Google Scholar 

  86. E. Schmidt, Math. Ann. 63, 433 (1907)

    Google Scholar 

  87. F. Sasaki, Phys. Rev. 138B, 1338 (1965)

    CAS  Google Scholar 

  88. D. M. Collins, Z. Naturforsch. 48a, 68 (1993);

    Google Scholar 

  89. P. Ziesche, Int. J. Quantum Chem. 56, 563 (1995)

    Google Scholar 

  90. G. Csanak, H. S. Taylor, and R. Yaris, Adv. At. Mol. Phys. 7, 287 (1971);

    Google Scholar 

  91. J. Linderberg and Y. Ohrn, Propagators in Quantum Chemistry, Acad. Press, London, 1973;

    Google Scholar 

  92. L. S. Cederbaum and W. Domcke, Adv. Chem. Phys. 36, 205 (1977)

    CAS  Google Scholar 

  93. W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 99, 5578 (1989)

    Google Scholar 

  94. M. Born and J. R. Oppenheimer, Ann. Phys. 84, 457 (1927)

    CAS  Google Scholar 

  95. F. Hund, Z. Phys. 43, 805 (1927)

    CAS  Google Scholar 

  96. L. S. Cederbaum, J. Chem. Phys. 66, 5084 (1977);

    Google Scholar 

  97. W. H. E. Schwarz, T. C. Chang, U. Seeger, K. H. Hwang, Chem. Phys. 117, 73 (1987);

    CAS  Google Scholar 

  98. J. Stöhr, NEXAFS Spectroscopy ( Springer, Berlin, 1996 )

    Google Scholar 

  99. R. D. Levine, Adv. Chem. Phys. 101, 625 (1997)

    Google Scholar 

  100. W. Kutzelnigg and V. H. Smith jr., Int. J. Quantum Chem. 2, 531 (1968);

    CAS  Google Scholar 

  101. V. H. Smith jr. and W. Kutzelnigg, Int. J. Quantum Chem. 2, 5553 (1968)

    Google Scholar 

  102. J. Wasilewski, Int. J. Quantum Chem. 57, 626 (1996)

    Google Scholar 

  103. S. F. Boys, Proc. Roy. Soc. (London) A 200, 542 (1950)

    Google Scholar 

  104. W. Kutzelnigg, Int. J. Quantum Chem. 51, 447 (1994)

    CAS  Google Scholar 

  105. R. Franke, W. Kutzelnigg, unpublished

    Google Scholar 

  106. R. N. Hill, J. Chem. Phys. 83, 1173 (1985)

    Google Scholar 

  107. C. Schwarz, Phys. Rev. 126, 1015 (1962)

    Google Scholar 

  108. J. D. Morgan III, in: Numerical Determination of the Electronic Structure of Atoms, Diatomic and Polyatomic Molecules, edited by M. Defranceschi and J. Delhalle (Kluwer, Dordrecht, 1989 ), p. 49

    Google Scholar 

  109. E. A. Hylleraas, Z. Phys. 54, 347 (1929);

    Google Scholar 

  110. E. A. Hylleraas, Z. Phys. 65, 209 (1930)

    Google Scholar 

  111. C. L. Pekeris, Phys. Rev. 112, 1649 (1958);

    Google Scholar 

  112. C. L. Pekeris, Phys. Rev. 126, 1470 (1962)

    Google Scholar 

  113. H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825 (1933);

    CAS  Google Scholar 

  114. W. Kolos, and C. C. J. Roothaan, Rev. Mod. Phys. 32, 219 (1960);

    CAS  Google Scholar 

  115. W. Kolos, L. Wolniewicz, J. Chem. Phys. 41, 3663, 3674 (1964);

    CAS  Google Scholar 

  116. W. Kolos, L. Wolniewicz, J. Chem. Phys. 49, 404 (1968)

    CAS  Google Scholar 

  117. A. Lüchow, H. Kleindienst, Int. J. Quantum Chem. 51, 211 (1994)

    Google Scholar 

  118. S. P. Goldman, Phys. Rev. A 57, 677 (1998)

    Google Scholar 

  119. J. S. Sims and S. Hagström, Phys. Rev. A 4, 908 (1971)

    Google Scholar 

  120. D. Frye, A. Preiskorn, G. C. Lie, and E. Clementi, in Modern Techniques in Computational Chem. MOTECC-90. edited by E. Clementi, ( Escom, Leiden, 1990 )

    Google Scholar 

  121. W. Klopper and W. Kutzelnigg, Chem. Phys. Lett. 134, 17 (1987);

    CAS  Google Scholar 

  122. W. Kutzelnigg, W. Klopper, J. Chem. Phys. 94, 1985 (1991);

    CAS  Google Scholar 

  123. W. Klopper, W. Kutzelnigg, J. Chem. Phys. 94, 2020 (1991);

    CAS  Google Scholar 

  124. H. Müller, W. Kutzelnigg, J. Noga, Mol. Phys. 92, 535 (1997)

    Google Scholar 

  125. J. Noga, W. Klopper, W. Kutzelnigg, in: Recent Advances in Coupled-Cluster Theory, edited by R. J. Bartlett. (World Scientific, Singapore, 1998 )

    Google Scholar 

  126. W. Klopper, in: Encyclopedia of Computational Chemistry, edited by P. v. R. Schleyer et al. (Wiley, Chichester, 1998 )

    Google Scholar 

  127. W. Klopper, Chem. Phys. Lett. 186, 583 (1991)

    CAS  Google Scholar 

  128. W. Klopper and C. C. M. Samson, J. Chem. Phys. 116, 6397 (2002)

    CAS  Google Scholar 

  129. K. Szalewicz, B. Jeziorski, H. J. Monkhorst, and J. G. Zabolitzky, J. Chem. Phys. 78, 1420 (1983);

    CAS  Google Scholar 

  130. K. Szalewicz, B. Jeziorski, H. J. Monkhorst, and J. G. Zabolitzky, J. Chem. Phys. 79, 5343 (1983); B. Jeziorski

    Google Scholar 

  131. K. Szalewicz, H. J. Monkhorst, and J. G. Zabolitzky J. Chem. Phys. 81, 368 (1984);

    Google Scholar 

  132. S. A. Alexander, H. J. Monkhorst, and K. Szalewicz, J. Chem. Phys. 85, 5821 (1986);

    CAS  Google Scholar 

  133. S. A. Alexander, H. J. Monkhorst, and K. Szalewicz, J. Chem. Phys. 87, 3976 (1987);

    CAS  Google Scholar 

  134. R. Bukowski, B. Jeziorski, K. Szalewicz, J. Chem. Phys. 110, 4165 (1999)

    CAS  Google Scholar 

  135. K. B. Wenzel, J. G. Zabolitzky, V. Szalewicz, B. Jeziorski, H. J. Monkhorst, J. Chem. Phys. 85, 3964 (1986)

    CAS  Google Scholar 

  136. K. B. Wenzel and J. G. Zabolitzky, J. chim. phys. 84, 691 (1987)

    CAS  Google Scholar 

  137. R. Bukowski, B. Jeziorski, S. Rybak, K. Szalewicz, J. Chem. Phys. 102, 888 (1995)

    CAS  Google Scholar 

  138. J. Rychlewski, W. Cencek, and J. Komasa, Chem. Phys. Lett. 229, 657 (1994)

    CAS  Google Scholar 

  139. M. Jeziorska, R. Bukowski, W. Cencek, M. Jaszunski, =B. Jeziorski, and K. Szalewicz, Coll. Czech. Chem. Comm in press; see also the chapter 4 by R. Bukowski, B. Jeziorski, and K. Szalewicz, on `Gaussian Geminals in coupled cluster and many-body perturbation theories’ in this book

    Google Scholar 

  140. K. A. Peterson, D. E. Woon and T. H. Dunning, jr., J. Chem. Phys. 100, 7410 (1994);

    CAS  Google Scholar 

  141. T. H. Dunning, jr., J. Chem. Phys. 90, 1007 (1989);

    CAS  Google Scholar 

  142. K. A. Peterson, A. K. Wilson, D. E. Woo, T. H. Dunning jr., Theo. Chim. Acta 97, 251 (1997);

    CAS  Google Scholar 

  143. A. K. Wilson, T. H. Dunning jr., J. Chem. Phys. 106, 8718 (1997);

    CAS  Google Scholar 

  144. J. M. L. Martin, P.R. Taylor, J. Chem. Phys. 106, 8818 (1997);

    Google Scholar 

  145. G. A. Petersson and_M. Braunstein, J. Chem. Phys. 83 5129 (1985)

    Google Scholar 

  146. G. A. Petersson and_M. Braunstein, Int. J. Quantum,Chem. 14, 545 (1978)

    Google Scholar 

  147. T. Helgaker, W. Klopper, H. Koch, J. Noga J. Chem. Phys. 106, 9639 (1997)

    CAS  Google Scholar 

  148. V. Fock, Kgl. Norsk. Vidinsk. Selsk. Forte. 31, 138, 145 (1958);

    Google Scholar 

  149. P. C. Abbott and E. N. Maslen, J. Phys. A 20, 2043 (1987);

    CAS  Google Scholar 

  150. J. D. Morgan III, Theor. Chim. Acta 69, 181 (1986)

    Google Scholar 

  151. K. Frankowski and C. L. Pekeris, Phys. Rev. 146, 46 (1966)

    CAS  Google Scholar 

  152. D. E. Freund, B. D. Huxtable, J. D. Morgan III, Phys. Rev. A 29, 980 (1984)

    CAS  Google Scholar 

  153. G. W. F. Drake, Phys. Rev. Lett. 59, 1549 (1987);

    Google Scholar 

  154. G. W. F. Drake and Z. -C. Yan, Chem. Phys. Lett. 229, 486 (1994);

    CAS  Google Scholar 

  155. G. W. F. Drake, M. M. Cassar, and R. A. Nistor, Phys. Rev. A, 054501 (2002)

    Google Scholar 

  156. W. Kutzelnigg and P. v. Herigonte, Adv. Quantum Chem. 36, 186 (1999)

    Google Scholar 

  157. J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Int. J. Quantum Chem. 14, 546 (1978);

    Google Scholar 

  158. J. A. Pople, M. Head-Gordon, and K. Raghavachari, J. Chem. Phys. 87, 5968 (1987)

    CAS  Google Scholar 

  159. W. Meyer, Int. J. Quantum Chem. 5, 341 (1971)

    Google Scholar 

  160. W. Meyer, J. Chem. Phys. 58, 1017 (1973)

    CAS  Google Scholar 

  161. R. Ahlrichs, H. Lischka, V. Staemmler, and W. Kutzelnigg, J. Chem. Phys. 62, 1225 (1975)

    CAS  Google Scholar 

  162. F. Coester, Nucl. Phys. 7, 421 (1958);

    Google Scholar 

  163. F. Coester and H. Kümmel, Nucl. Phys. 17, 477 (1960);

    CAS  Google Scholar 

  164. J. Cizek, J. Chem. Phys. 45, 4256 (1966);

    CAS  Google Scholar 

  165. P. R. Taylor, G. B. Bacslay, N. S. Hush, A. C. Hurley, Chem. Phys. Lett. 41, 444 (1976);

    CAS  Google Scholar 

  166. P. R. Taylor, G. B. Bacslay, N. S. Hush, A. C. Hurley, J. Chem. Phys. 69, 4669 (1978);

    CAS  Google Scholar 

  167. R. J. Bartlett and G. D. Purvis, Int. J. Quantum Chem. 14, 561 (1978)

    CAS  Google Scholar 

  168. W. Meyer, in: Modern Theoretical Chemistry, edited by H. F. Schaefer III (Plenum, New York, 1977 );

    Google Scholar 

  169. H. J. Werner, and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988)

    CAS  Google Scholar 

  170. D. Mukherjee, R. K. Moitra and A. Mukhopadhyay, Mol. Phys. 30, 1861 (1975);

    CAS  Google Scholar 

  171. D. Mukherjee, R. K. Moitra and A. Mukhopadhyay, Mol. Phys. 33, 955 (1977);

    CAS  Google Scholar 

  172. U. S. Maha Patra, B. Datta, B. Bandyopadhay and D. Mukherjee, Adv. Adv. Quantum Chem. 30, 163 (1998)

    Google Scholar 

  173. L. Moller and M. S. Plesset, Phys. Rev. 46, 618 (1934)

    CAS  Google Scholar 

  174. H. J. Monkhorst, B. Jeziorski and F. E. Harris, Phys. Rev. A 23, 1639 (1981);

    CAS  Google Scholar 

  175. B. Jeziorski and R. Moszynski, Int. J. Quantum Chem. 48, 161 (1993)

    CAS  Google Scholar 

  176. W. Kutzelnigg, Theor. Chim. Acta 80, 349 (1991)

    CAS  Google Scholar 

  177. W. Kutzelnigg, Mol. Phys. 94, 65 (1998)

    CAS  Google Scholar 

  178. J. Noga, R. J. Bartlett, M. Urban, Chem. Phys. Lett. 134, 128 (1987)

    Google Scholar 

  179. J. Olsen, private communication

    Google Scholar 

  180. C. Garrod J. Math. Phys. 16, 927 (1975)

    Google Scholar 

  181. M. Nakata, H. Nakatsuji, M. Ehara, M. Fukuda, K. Nakata, K. Fujisawa J. Chem. Phys. 114, 8282 (2001);

    CAS  Google Scholar 

  182. M. Nakata, M. Ehara, H. Nakatsuji, J. Chem. Phys. 116, 5432–5439 (2002)

    CAS  Google Scholar 

  183. M. Nooijen, Phys. Rev. Lett. 84, 2108 (2000);

    CAS  Google Scholar 

  184. T. van Voorhis and M. Head-Gordon, J. Chem. Phys. 115, 7814 (2001)

    Google Scholar 

  185. L. Greengaard, Science 265, 909 (1994);

    Google Scholar 

  186. C. A. White, B. G. Johnson, P. M. W. Gill, M. Head-Gordon, Chem. Phys. Lett. 230, 8 (1994);

    CAS  Google Scholar 

  187. C. A. White, B. G. Johnson, P. M. W. Gill, M. Head-Gordon, Chem. Phys. Lett. 253, 268 (1996);

    CAS  Google Scholar 

  188. P. M. W. Gill, R. D. Adamson and J. A. Pople, Mol. Phys. 88, 1005 (1996)

    CAS  Google Scholar 

  189. S. Saebo, P. Pulay, Chem. Phys. Lett. 113, 13 (1985);

    CAS  Google Scholar 

  190. S. Saebo, P. Pulay, J. Chem. Phys. 88, 1884 (1988);

    CAS  Google Scholar 

  191. S. Saebo, P. Pulay, Ann. Rev. Phys. Chem. 44, 213 (1993);

    CAS  Google Scholar 

  192. C. Hampel, H. -J. Werner, J. Chem. Phys. 104, 6286 (1996);

    CAS  Google Scholar 

  193. P. Y. Ayala and G. E. Scuseria, J. Chem. Phys. 110, 3660 (1999);

    CAS  Google Scholar 

  194. S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999)

    CAS  Google Scholar 

  195. H. Monkhorst, Int. J. Quantum Chem. 511, 421 (1977)

    Google Scholar 

  196. H. D. Cohen and C. C. J. Roothaan, J. Chem. Phys. 43, 534 (1965)

    Google Scholar 

  197. W. Kutzelnigg, Theor. Chim. Acta 86, 41 (1993)

    CAS  Google Scholar 

  198. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 846 (1964)

    Google Scholar 

  199. E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983)

    Google Scholar 

  200. H. Eschrig, The Fundamentals of Density Functional Theory ( Teubner, Stuttgart, 1996 )

    Google Scholar 

  201. L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927);

    Google Scholar 

  202. E. Fermi, Rend. Accad. Lincei 6, 602 (1927)

    CAS  Google Scholar 

  203. J. C. Slater, Phys. Rev. 81, 385 (1951);

    Google Scholar 

  204. J. C. Slater, J. Chem. Phys. 435, 228 (1965)

    Google Scholar 

  205. A. D. Becke, Phys. Rev. A 38 3098 (1988)

    Google Scholar 

  206. J. P. Perdew, and W. Yue, Phys. Rev. B 33, 8000 (1986)

    Google Scholar 

  207. J. B. Krieger, Y. Lie, G. J. Iafrate, Phys. Rev. A 46, 5453 (1992);

    Google Scholar 

  208. J. B. Krieger, Y. Lie, G. J. Iafrate, Phys. Rev. 47, 165 (1993);

    Google Scholar 

  209. T. Grabo, T. Kreibich, S. Kurth, and E. K. U. Groß, in: Strong Coulomb Correlations in Electronic Structure: Beyond the Local Density Approximation, edited by V. S. Anisinov ( Gordon and Breach, Tokyo, 1998 )

    Google Scholar 

  210. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, ( University Press, Oxford, 1989 )

    Google Scholar 

  211. E. J. Baerends and O. V. Grisenko, J. Phys. Chem. A 101, 5383 (1997);

    Google Scholar 

  212. E. J. Baerends, Phys. Rev. Lett. 87, 133004 (2001)

    Google Scholar 

  213. A. Görling, H. Levy, Phys. Rev. A 50, 196 (1994);

    Google Scholar 

  214. A. Görling, H. Levy, Phys. Rev. A53, 3140 (1996);

    Google Scholar 

  215. A. Görling, Phys. Rev. Lett. 83, 5459 (1999);

    Google Scholar 

  216. A. Görling, Phys. Rev. Lett. 85, 4229 (2000)

    Google Scholar 

  217. E. Runge, E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    CAS  Google Scholar 

  218. S. Goedecker and C. J. Umrigar, Phys. Rev. Lett. 81, 866 (1998)

    CAS  Google Scholar 

  219. W. Kutzelnigg, Theor. Chim. Acta 1, 327, 343 (1999);

    Google Scholar 

  220. A. Müller, Phys. Lett. A 105, 866 (1984)

    Google Scholar 

  221. M. A. Buijse, Thesis, Vrije Universiteit, Amsterdam 1991;

    Google Scholar 

  222. M. A. Buijse and E. J. Baerends, Mol. Phys. 100, 401 (2002)

    CAS  Google Scholar 

  223. J. Cioslowski and K. Pernal, J. Chem. Phys. 111, 3396 (1999)

    CAS  Google Scholar 

  224. K. Yasuda, Phys. Rev. Lett. 88, 053001 (2002)

    Google Scholar 

  225. P. Fulde, Electron Correlation in Molecules and Solids ( Springer, Berlin, 1991 )

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kutzelnigg, W. (2003). Theory of Electron Correlation. In: Rychlewski, J. (eds) Explicitly Correlated Wave Functions in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0313-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0313-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6448-6

  • Online ISBN: 978-94-017-0313-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics