Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 108))

Abstract

Many composites consist of a fabric structure embedded in a matrix material. The fibres are often made of material which shows noticeable plastic deformation. The overall stiffness of the specimens is usually determined by the stiffness of these fibres, such that the correct modeling of the orthotropy of the composite is very important. In addition, the structure experiences large deformations which must be accounted for. In the present paper, suitable models for this type of materials are therefore derived in the framework of finite anisotropic plasticity. A main problem is, however, the lack of experimental data in the literature. For this reason, a computer model of the composite is set up for numerical experiments. The results serve to determine the material parameters of the developed continuum mechanical model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asaro, R. (1983). Micromechanics of crystals and polycrystals. Advances in Applied Mechanics, 23, 1–115.

    Article  Google Scholar 

  2. Bertram, A. (1992). Description of finite inelastic deformations. In: Proceedings of MECAMAT ’92, Multiaxial plasticity, Benallal A., Billardon R., Marquis D. [eds.], 821–835.

    Google Scholar 

  3. Bertram, A. (1998). An alternative approach to finite plasticity based on material isomorphisms. International Journal of Plasticity, 52, 353–374.

    Google Scholar 

  4. Boehler, J.P. (1977). On irreducible representations for isotropic functions. Zeitschrift für Angewandte Mathematik und Mechanik, 57, 323–327.

    Article  MATH  MathSciNet  Google Scholar 

  5. Boehler, J.P. (1979). A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy. Zeitschrift für Angewandte Mathematik und Mechanik, 59, 157–167.

    Article  MATH  MathSciNet  Google Scholar 

  6. Bonet, J. and Burton, A.J. (1998). A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Computer Methods in Applied Mechanics and Engineering, 162, 151–164.

    Article  ADS  MATH  Google Scholar 

  7. Cuitino, A.M. and Ortiz, M. (1992). Computational modeling of single crystals. Modelling Simul. Mat. Sci. Engng, 1, 225–263.

    Article  ADS  Google Scholar 

  8. Gasser, T.C. and Holzapfel, G.A. (2001). A rate-independent elastoplastic constitutive model for fiber-reinforced composites at finite strains: Continuum basis, algorithmic formulation and finite element implementation. In preparation.

    Google Scholar 

  9. Hill, R. (1966). Generalized constitutive relations for incremental deformation of metal crystals by multislip. Journal of the Mechanics and Physics of Solids, 14, 95–102.

    Article  ADS  Google Scholar 

  10. Holzapfel, G.A., Eberlein, R., Wriggers, P. and Weizsäcker, H.W. (1996). A new axisymmetrical membrane element for anisotropic, finite strain analysis of arteries. Communications in Numerical Methods in Engineering, 12, 507–517.

    Article  MATH  Google Scholar 

  11. Holzapfel, G.A., Schulze-Bauer, C.A.J. and Stadler, M. (2000). Mechanics of angioplasty: wall, balloon and stent. In: Mechanics in Biology, Casey J. and Bao G. [eds.], AMD-Vol. 242/BED-Vol. 46, 141–156, The American Society of Mechanical Engineers (ASME), New York, USA.

    Google Scholar 

  12. Liu, S. (1982). On representations of anisotropic invariants. International Journal of Engineering Science, 20, 1099–1109.

    Article  MATH  MathSciNet  Google Scholar 

  13. Miehe, C. (1996). Exponential map algorithm for stress updates in anisotropic multiplicative elastoplasticity for single crystals. International Journal for Numerical Methods in Engineering, 39, 3367–3390.

    Article  ADS  MATH  Google Scholar 

  14. Ogden, R.W. (1984). Nonlinear Elastic Deformations, Ellis Horwood, Chichester.

    MATH  Google Scholar 

  15. Reese, S., Raible, T. and Wriggers P. (2001). Finite element modeling of orthotropic material behavior in pneumatic membranes. International Journal of Solids and Structures. To be published 2001.

    Google Scholar 

  16. Reese, S. (2001). Meso-macro modelling of fibre-reinforced composites exhibiting elastoplastic material behavior. In: Proceedings of the Second European Conference on Computational Mechanics, Cracow, Poland.

    Google Scholar 

  17. Rice, J.R. (1971). Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. Journal of the Mechanics and Physics of Solids, 19, 433–455.

    Article  ADS  MATH  Google Scholar 

  18. Simo, J.C. and Miehe, C. (1992). Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Computer Methods in Applied Mechanics and Engineering, 98, 41–104.

    Article  ADS  MATH  Google Scholar 

  19. Spencer, A.J.M. (2001). A theory of viscoplasticity for fabric-reinforced composites. Journal of the Mechanics and Physics of Solids, 49, 2667–2687.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Svendsen, B. (1994). On the representation of constitutive relations using structure tensors. International Journal of Engineering Science, 32, 1889–1892.

    Article  MATH  MathSciNet  Google Scholar 

  21. Svendsen, B. (1998). A thermodynamic formulation of finite-deformation elastoplasticity with hardening based on the concept of material isomorphism. International Journal of Plasticity, 14, 473–488.

    Article  MATH  Google Scholar 

  22. Svendsen, B. (2001). On the modelling of anisotropic elastic and inelastic material behavior at large deformation. International Journal of Solids and Structures. To be published 2001.

    Google Scholar 

  23. Wang, C.C. and Bloom, J. (1974). Material uniformity and inhomogeneity in anelastic bodies. Archive for Rational Mechanics and Analysis, 53, 246.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Weiss, J.A., Maker, B.N. and Govindjee, S. (1996). Finite element implementation of incompressible, transversely isotropic hyperelasticity. Computer Methods in Applied Mechanics and Engineering, 135, 107–128.

    Article  ADS  MATH  Google Scholar 

  25. Zhang, Q.-S. and Rychlewski, J.M. (1990). Structural tensors for anisotropic solids. Archives of Mechanics, 42, 267–277.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Reese, S. (2003). Anisotropic Elastoplastic Material Behavior in Fabric Structures. In: Miehe, C. (eds) IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains. Solid Mechanics and Its Applications, vol 108. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0297-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0297-3_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6239-0

  • Online ISBN: 978-94-017-0297-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics