Skip to main content

An Information Integrated Approach for Reservoir Characterization

Joint Lithologic Inversion

  • Chapter
Book cover Geophysical Applications of Artificial Neural Networks and Fuzzy Logic

Part of the book series: Modern Approaches in Geophysics ((MAGE,volume 21))

Abstract

Ambiguous dependence of observed data related to lithologic parameters suggests that practical lithologic inversion problems are characterized by both deterministic mechanism and statistical behavior. The Caianiello neural network method is presented in this paper, including neural wavelet estimation, input signal reconstruction, and nonlinear factor optimization. A joint inversion scheme for porosity and clay-content estimations is established based on the combination of the Caianiello neural network with some deterministic petrophysical models. First, inverse neural wavelets are extracted using known solutions, and then the inverse-operator-based inversion is used to estimate an initial parameter model. Second, forward neural wavelets are estimated likewise, and then the forward-operator-based reconstruction can improve the initial parameter model. The scheme has been applied in a complex continental deposit in western China and significantly improves the spatial description of reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An, P., and Moon, W.M., 1993, Reservoir characterization using feedforward neural networks: 63th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 258–262.

    Google Scholar 

  • Angeleri, G.P., and Carpi, R., 1982, Porosity prediction from seismic data: Geophys. Prosp., 30, 580–607.

    Article  Google Scholar 

  • Baldwin, J.L., Bateman, R.M., and Wheatley, C.L., 1990, Application of a neural network to the problem of mineral identification from well logs: The Log Analyst, 31, 279–293.

    Google Scholar 

  • Bolt, D.G., Daneel, G., and Clare, A., 1997, Prospect Explorer: an exploration neural analysis tool: 67th Ann. Intemat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2041–2044.

    Google Scholar 

  • Burge, D.W., and Neff, D.B., 1998, Well-based seismic lithology inversion for porosity and pay-thickness mapping: The Leading Edge, 17, 166–171.

    Google Scholar 

  • Caianniello, E.R., 1961, Outline of a theory of thought-processes and thinking machines: J. Theoret. Biol., 2, 204–235.

    Article  Google Scholar 

  • Calderon-Macias, C., Sen, M.K., and Stoffa, P.L., 1996, A neural network optimization approach for automatic NMO correction and velocity estimation: 66th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1979–1982.

    Google Scholar 

  • Clark, G.A., and Glinsky, M.E., Sandhya Devi, K.R., Robinson, J.H., Cheng, P.K.Z., and Ford, G.E., 1996, Automatic event picking in pre-stack migrated gathers using a probabilistic neural network: 66th Ann. Intemat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 735–738.

    Chapter  Google Scholar 

  • de Buyl, M., Guidish, T., and Bell, F., 1986, Reservoir description from seismic lithologie parameter estimation: J. Petr. Tech., 40, 475–482.

    Google Scholar 

  • Doyen, P.M., 1988, Porosity from seismic data: A geostatistical approach: Geophysics, 53, 1263–1275.

    Google Scholar 

  • Duijndam, A.J.W., 1988a, Bayesian estimation in seismic inversion. Part I: Principles: Geophys. Prosp., 36, 878–898.

    Article  Google Scholar 

  • Duijndam, A.J.W., 1988b, Bayesian estimation in seismic inversion. Part II: Uncertainty analysis: Geophys. Prosp., 36, 899–918.

    Article  Google Scholar 

  • Ecoublet, P., Symes, W.W., and Levin, S., 1997, Seismic inversion for porosity using a backpropagation neural network: TRIP Annual Report 97, Rice University.

    Google Scholar 

  • Essenreiter, R., and Karrenbach, M., 1996, Deconvolution using neural networks: 66th Ann. Intemat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1611–1614.

    Google Scholar 

  • Fish, B., and Kasuma, T., 1994, A neural network approach to automate velocity picking: 64th Ann. Intemat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 185–188.

    Google Scholar 

  • Fournier, F., and Derain, J.F., 1995, A statistical methodology for deriving reservoir properties from seismic data: Geophysics, 60, 1437–1450.

    Google Scholar 

  • Fu, L.Y., 1995, An artificial neural network theory and its application to seismic data processing: PhD thesis, University of Petroleum, Beijing, PRC.

    Google Scholar 

  • Fu, L.Y., Chen, S., and Duan, Y., 1997, ANNLOG technique for seismic wave impedance inversion and its application effect: Oil Geophysical Prospecting: 32, 34–44.

    Google Scholar 

  • Fu, L.Y., 1997, Application of the Caianiello neuron-based network to joint inversion: 67th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1624–1627.

    Google Scholar 

  • Fu, L.Y., 1999a, A neuron filtering model and its neural network for space-and time-varying signal processing: Third International Conference on Cognitive and Neural systems, Boston University, Paper Vision B03.

    Google Scholar 

  • Fu L.Y., 1999b, Joint inversion for acoustic impedance: Geophysics, accepted.

    Google Scholar 

  • Gelfand, V.A., and Lamer, K.L., 1984, Seismic lithologic modeling: The leading Edge, 3, no. 11, 30–34.

    Article  Google Scholar 

  • Han, D.H., Nur, A., and Morgan, D., 1986, Effects of porosity and clay content on wave velocities in sandstones: Geophysics, 51, 2093–2107.

    Google Scholar 

  • Hart, D.I., 1996, Improving the reliability of first-break picking with neural networks: 66th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1662–1665.

    Google Scholar 

  • He, N.Q., and Reynolds, A.C., 1995, Estimation of porosity in thin-layered reservoirs by seismic inversion: 65th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1022–1024.

    Google Scholar 

  • Himmer, P., and Link, C., 1997, Reservoir porosity prediction from 3-D seismic data using neural networks: 67th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 842–845.

    Google Scholar 

  • Huang, K. -Y., Chang, W.R.I., and Yen, H.T., 1990, Self-organising neural network for picking seismic horizons: 60th Ann. Intemat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 313–315.

    Google Scholar 

  • Huang, Z., Shimeld, J., Williamson, M., and Katsube, J., 1996, Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada: Geophysics, 61, 422–436.

    Google Scholar 

  • Jackson, D.D., and Matsu’ura, M., 1985, A Bayesian approach to nonlinear inversion: J. Geophys. Res., 90, 581–591.

    Article  Google Scholar 

  • Klimentos, T., and McCann, C., 1990, Relationships among compressional wave attenuation, porosity, clay content, and permeability in sandstones: Geophysics, 55, 998–1014.

    Google Scholar 

  • Kowallis, B., Jones, L.E., and Wang, H.F., 1984, Velocity-porosity-clay content; systematics of poorly consolidated sandstones: J. Geophys. Res., 89, 10355–10364.

    Article  Google Scholar 

  • Leggett, M., Sandham, W.A., and Durrani, T.S., 1994, 3-D Seismic horizon tracking using an artificial neural network: 56th Meeting, Eur. Assoc. Expl. Geophys., Paper B049.

    Google Scholar 

  • Lines, L.R. and Treitel, S., 1984, A Review of least square inversion and its application to geophysical problems: Geophys. Prosp., 32, 159–186.

    Article  Google Scholar 

  • Lortzer, G.J.M., and Berkhout, A.J., 1992, An integrated approach to lithologie inversion. Part I: Theory: Geophysics, 57, 233–244.

    Google Scholar 

  • Martinez, R. D., 1985, Deterministic estimation of porosity and formation pressure from seismic data: 55th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 461–464.

    Google Scholar 

  • Maureau, G.T.F.R., and Van Wijhe, D.H., 1979, The prediction of porosity in the Permian carbonate of eastern Netherlands using seismic data: Geophysics, 44, 1502–1517.

    Google Scholar 

  • McCormack, M.D., Zuacha, D.E., and Dushek, D.W., 1993, First-break refraction event picking and seismic data trace editing using neural networks: Geophysics, 58, 67–78.

    Google Scholar 

  • McCulloch, W.S., and Pitts, W., 1943, A logical calculus of the ideas immanent in nervousactivity: Bull. of Math. Bio., 5, 115–133.

    Article  Google Scholar 

  • Neff D.B., 1990a, Incremental pay thickness modeling of hydrocarbon reservoirs: Geophysics, 55, 558–566.

    Google Scholar 

  • Neff D.B., 1990b, Estimated pay mapping using three-dimensional seismic data and incremental pay thickness modeling: 55, 567–575..

    Google Scholar 

  • Neff D.B., 1993, Amplitude map analysis using forward modeling in sandstone and carbonate reservoirs: Geophysics, 58, 1428–1441.

    Google Scholar 

  • Nur, A., 1992, The role of critical porosity in the physical response of rocks: EOS, Trans. AGU, 43, 66.

    Google Scholar 

  • Nur, A., Mavko, G., Dvorkin, J., and Galmudi, D., 1998, Critical porosity: A key to relating physical properties to porosity in rocks: The Leading Edge, 17, 357–362.

    Google Scholar 

  • Pan, G.C., 1996, Recent development for optimum data integration in mineral exploration: 66th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 646–649.

    Google Scholar 

  • Poulton, M.M.; Sternberg, B.K., and Glass, C.E., 1992, Location of subsurface targets in geophysical data using neural networks: Geophysics, 57, 1534–1544.

    Google Scholar 

  • Raymer, D.S., Hunt, E.R., and Gardner, J.S., 1980, An improved sonic transit time-to-porosity transform: Presented at the Soc. Prof. Well Log Anal. 21st Ann. Mtg., Paper P.

    Google Scholar 

  • Robinson, E.A., 1957, Predictive decomposition of seismic traces: Geophysics, 22, 767–778.

    Google Scholar 

  • Rogers, S., Fang, J.H., Karr, C.L., and Stanley, D.A., 1992, Determination of lithology from well logs using a neural network: AAPG Bull., 76, 731–739.

    Google Scholar 

  • Russell, B., Hampson, D., Schuelke, J., and Quirein, J., 1997, Multiattribute seismic analysis: The Leading Edge, 16, 1439–1443.

    Article  Google Scholar 

  • Schultz, P.S., Ronen, S., Hattori, M., and Corbett, C., 1994, Seismic guided estimation of log properties, Part 1: The Leading Edge, 13, part 1, 305–310, part 2, 674–678, part 3, 770–776.

    Google Scholar 

  • Tarantola, A., and Valette, B., 1982, Inverse problems: Quest for information: J. Geophys., 50, 159–170.

    Google Scholar 

  • Thadani, S.G., Alabert, F., and Journel, A.G., 1987, An integrated geostatistical/pattern recognition technique for characterization of reservoir spatial variability: 57th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 372–375.

    Google Scholar 

  • Tosaya, C., and Nur, A., 1982, Effects of diagenesis and clays on compressional velocities in rocks: Geophys. Res. Letts., 9, 5–8.

    Article  Google Scholar 

  • Vernik, L., 1994, Predicting lithology and transport properties from acoustic velocities based on petrophysical classification of siliciclastics: Geophysics, 63, 420–427.

    Google Scholar 

  • Vernik, L., and Nur, A., 1992, Petrophysical classification of siliciclastics for lithology and porosity prediction from seismic velocities: AAPG Bull., 76, 1295–1309.

    Google Scholar 

  • Wang, B., Pann, K., Schuelke, J., Shirley, T., and Ferguson, B., 1997, View of neural network training as constrained optimization and applications to rock porosity prediction: 67th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 838–841.

    Google Scholar 

  • Wang, L.X., and Mendel, J.M., 1992, Adaptive minimum prediction-error deconvolution and source wavelet estimation using Hopfield neural networks: Geophysics, 57, 670–679.

    Google Scholar 

  • Wyllie, M.R.J., Gregory, A.R., and Gardner, G.H.F., 1958, An experimental investigation of factors affecting elastic wave velocities in porous media: Geophysics, 23, 459–493.

    Google Scholar 

  • Zhang, X., Li, Y., Hu, Q., and Feng, D., 1995, Early-stage reservoir analysis with SOMA: A neural network approach: 65th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 138–141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fu, LY. (2003). An Information Integrated Approach for Reservoir Characterization. In: Sandham, W.A., Leggett, M. (eds) Geophysical Applications of Artificial Neural Networks and Fuzzy Logic. Modern Approaches in Geophysics, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0271-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0271-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6476-9

  • Online ISBN: 978-94-017-0271-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics