Skip to main content

Understanding the Mechanisms of Local Pulmonary Drug Absorption and Metabolism: An in Vitro Model of the Airway Epithelium

  • Conference paper
Optimization of Aerosol Drug Delivery
  • 393 Accesses

Abstract

Following the image created by John Patton [1], the trachea and bronchi of the lung may be compared to the stem and branches of a tree. Their function, of course, is not limited to supporting and supplementing the tissues of gas-exchange (leafs and alveoli, respectively); the conducting airways are also “more than just a barrier”, as recently stated by Folkerts and Nijkamp [2]. With every breath, the airway epithelium is exposed to the environmental air, and has to cope with airborne microorganisms and pollutant particles, which have to be filtered out before reaching the lower respiratory tract. Throughout evolution, defense mechanisms have been developed to face this challenge. These include the production and secretion of mucus, which entraps foreign airborne particles, and is expelled by the action of epithelial cilia (mucociliary escalator). A range of degrading enzymes and antibacterial agents are found in the airway surface liquid (ASL), complementing the effect of the mucociliary escalator. As a mucosal tissue, the airway epithelium is also part of the mucosal associated lymphoid tissue (MALT) [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. PATTON J.S. — Mechanism of macromolecule absorption by the lungs [Review]. — Adv. Drug Del. Rev., 19, 3–36, 1996.

    Article  CAS  Google Scholar 

  2. FOLKERTS G., NIJKAMP F.P. — Airway epithelium: more than just a barrier! [Review]. Trends Pharmacol. Sci., 19, 334–341, 1998.

    Article  PubMed  CAS  Google Scholar 

  3. MESTECKY J. — The common mucosal immune system and current strategies for induction of immune responses in external secretions. — J. Clin. Immunol., 148, 265–276, 1987.

    Article  Google Scholar 

  4. PATTON J.S., PLATZ R.M. — Routes of delivery: case studies. Pulmonary delivery of peptides and proteins for systemic action. — Adv. Drug Del. Rev., 8, 179–196, 1992.

    Article  CAS  Google Scholar 

  5. BORCHARDT R.T. — The application of cell culture systems in drug discovery and development. — J. Drug Target., 3, 179–182, 1995.

    Article  PubMed  CAS  Google Scholar 

  6. FORBES B., LANSLEY A.B. — Transport characteristics of formoterol and salbutamol across a bronchial epithelial drug absorption model. — Eur. J. Pharm. Sci., 6, S24, 1998.

    Google Scholar 

  7. CAVET M.E., WEST M., SIMMONS N.L. — Transepithelial transport of the fluoroquinolone ciprofloxacin by human airway epithelial Calu-3 cells. Antimicrob. Agents Chemotherap., 41, 2693–2698, 1997.

    CAS  Google Scholar 

  8. MEANEY C., FLOREA B.I., BORCHARD G., JUNGINGER H.E. — Characterization of a human submucosal gland cell line (Calu-3) as an in vitro model of the airway epithelium. — Proceed. Infi. Symp. Cont. Rel. Bioact. Mater., 26, 198–199, 1999.

    Google Scholar 

  9. MATHIAS N.R., KIM K.-J., LEE V.H.L. — Targeted drug delivery to the respiratory tract: Solute permeability of air-interface cultured rabbit tracheal epithelial cell monolayers. — J. Drug Target, 4, 79–86, 1996.

    Article  PubMed  CAS  Google Scholar 

  10. ADLER K.B., CHENG P.W., KIM K.C. — Characterization of guinea pig tracheal epithelial cell maintained in biphasic organotypic culture: cellular composition and biochemical analysis of released glycoconjugates. — Am. Respir. Cell Mol. Biol., 2, 145–154, 1990.

    Article  CAS  Google Scholar 

  11. CLARK A.B., RANDELL S.H., NETTESHEIM P., GRAY T.E., BAGNELL B., OSTROWSKI L.E. — Regulation of ciliated cell differentiation in cultures of rat tracheal epithelial cells. — Am. J. Respir. Cell Mol. Biol., 12, 329–338, 1995.

    Article  PubMed  CAS  Google Scholar 

  12. LEE T.C., WU R., BRODY A.R., BARRETT J.C, NETTESHEIM P. — Growth and differentiation of hamster tracheal epithelial cells in vitro. — Exp. Lung Res., 6, 27–45, 1987.

    Article  Google Scholar 

  13. GRUENERT D.C., FINKBEINER W.E., WIDDICOMBE J.H. — Culture and transformation of human airway epithelial cells. — Am. J. Physiol, 286, L347–360, 1995.

    Google Scholar 

  14. WIESEL J.M., GAMIEL H., VLODAVSKY I., GAY I., BEN-BASSAT H. — Cell attachment, growth characteristics and surface morphology of human upper-respiratory tract epithelium cultured on extracellular matrix. — Eur. J. Clin. Invest., 13, 57, 1983.

    Article  PubMed  CAS  Google Scholar 

  15. FORBES B. — Human airway epithelial cell lines for in vitro drug transport and metabolism studies. — PSTT, 3, 18–27, 2000.

    CAS  Google Scholar 

  16. FOGH J., FOGH J.M., ORFEO T. — One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. — J. Natl. Cancer Inst., 59, 221–225, 1977.

    PubMed  CAS  Google Scholar 

  17. WINTON H.L., WAN H., CANNELL, M.B., GRUENERT D.C., THOMPSON P.J., GARROD D.R., STEWART G.A., ROBINSON C. — Cell lines of pulmonary and non-pulmonary origin as tools to study the effects of house dust mite proteinases on the regulation of epithelial permeability. — Clin. Exp. Allergy, 28, 1273–1285, 1998.

    Article  PubMed  CAS  Google Scholar 

  18. FURUSE M., ITOH M., HIRASE T., NAGAFUCHI A., YONEMURA S., TSUKITA S. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. — J. Cell Biol, 127, 1617–1626, 1994.

    Article  PubMed  CAS  Google Scholar 

  19. WAN H., WINTON H.L., SOELLER C., STEWART G.A., THOMPSON P.J., GRUENERT D.C., CANNELL M.B., GARROD D.R., ROBINSON C. — Tight junction properties of the immortalized human bronchial epithelial cell lines Calu-3 and 16HBE14o-. — Eur. Resp. J., 15, 1958–1068, 2000.

    Article  Google Scholar 

  20. FLOREA B.I., VAN DER SANDT I.C.J., SCHRIER S.M., KOOIMAN K., DERYCKERE K., DE BOER A.G., JUNGINGER H.E., BORCHARD G. — Evidence of P-glycoprotein mediated apical to basolateral transport of flunisolide in human broncho-tracheal epithelial cells (Calu-3). Brit. J. Pharmacol., 134, 1555–1563, 2001.

    Article  CAS  Google Scholar 

  21. FOSTER K.A., AVERY M.L., YAZDANIAN M., AUDUS K.L. — Characterization of the Calu-3 cell line as a tool to screen pulmonary drug delivery. — Int. J. Pharm., 208, 1–11, 2000.

    Article  PubMed  CAS  Google Scholar 

  22. AHDIEH M., VANDENBOS T., YOUAKIM A. — Lung epithelial barrier function and wound healing are decreased by IL-4 and IL-13 and enhanced by IFN-G. — Am. J. Physiol. Cell Physiol., 281, C2029–C2038, 2001.

    Google Scholar 

  23. BERGER J.T., VOYNOW J.A., PETERS K.W., ROSE M.C. — Respiratory carcinoma cell lines. MUC genes and glycoconjugates. — Am. J. Respir. Cell Mol. Biol, 20, 500–510, 1999.

    Article  PubMed  CAS  Google Scholar 

  24. ROSE M.C., GENDLER S.J. — Airway mucin genes and gene products. In: Airway mucus: Basic mechanisms and clinical perspectives. D. Rogers, M. Lethem Eds., Birkhauser Publishing Limited, Basel, CH, 1997, pp. 41–66.

    Chapter  Google Scholar 

  25. HOLLINGSWORTH M.A., BATRA S.K., Q.I .W., YANKASKAS J.R. — MUCl mucin mRNA in cultured human nasal and bronchial epithelial cells. — Am. J. Respir. Cell Mol. Biol., 6, 516–520, 1992.

    Article  PubMed  CAS  Google Scholar 

  26. M.R., MADSEN C.S., JENNINGS A., KASPERBAUER J.L., GENDLER S.J. — Mucin mRNA expression in normal and vasomotor inferior turbinates. — Am. J. Rhinology, 11, 293–302, 1997.

    Article  Google Scholar 

  27. YU C., YANG P.C., SHEW J.H., HONG T.M., LEE Y.C., LEE L.N., LUH K.T., WU C.W. Mucin mRNA expression in lung adenocarcinoma cell lines and tissues. — Oncology, 53, 118–126, 1996.

    Article  PubMed  CAS  Google Scholar 

  28. MCCRAY P.B., BENTLEY L. — Human airway epithelia express a beta-defensin. — Am. J. Respir. Cell Mol. Biol., 16, 343–349, 1997.

    Article  PubMed  CAS  Google Scholar 

  29. BALS R. WANG X., WU Z., FREEMAN T., BAFNA V., ZASLOFF M., WILSON J.M. Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. — J. Clin. Invest., 102, 874–880, 1998.Division of Pharmaceutical Technology, Leiden/Amsterdam Center for Drug Research, PO Box 9502, 2300 RA Leiden, The Netherlands Phone: ++31–71–527 4350, Fax: ++31–71–527 4565 E-mail: Bor chard&Jacdr. leidenuniv. nl

    Article  PubMed  CAS  Google Scholar 

  30. BALS R., WEINER D.J., MEEGALLA R.L., WILSON J.M. — Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. — J. Clin. Invest., 103, 1113–1117, 1999.

    Article  PubMed  CAS  Google Scholar 

  31. COLE A.M., DEW AN P., GANZ T. — Innate antimicrobial activity of nasal secretions. Infect. Immun., 67, 3267–3275, 1999.

    PubMed  CAS  Google Scholar 

  32. SMITH J.J., TRAVIS S.M., GREENBERG E.P., WELSH M.J. — Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. — Cell, 85, 229–236, 1996.

    Article  PubMed  CAS  Google Scholar 

  33. RENDERS N., VERBRUGH H., VAN BELKUM A. — Dynamics of bacterial colonization in the respiratory tract of patients with cystic fibrosis. — Infect. Genet. Evol., 1, 29–39, 2001.

    Article  PubMed  CAS  Google Scholar 

  34. ZHANG Y., REENSTRA W.W., CHIDEKEL A. — Antibacterial activity of apical surface fluid from the human airway cell line Calu-3. Pharmacologic alteration by corticosteroids and D2-agonists. — Am. J. Respir. Cell Mol. Biol., 25, 196–202, 2001.

    Article  PubMed  CAS  Google Scholar 

  35. LEE A., CHOW D., HAUS B., TSENG W., EVANS D., FLEISZIG S., CHANDY G., MACHEN T. — Airway epithelial tight junctions and binding and cytotoxicity of Pseudomonas aeruginosa. Am. J. Physiol., 277, L204–L207, 1999.

    Google Scholar 

  36. LôPEZ-BOADO Y.S., WILSON C.L., PARKS W.C. — Regulation of matrilysin expression in airway epithelial cells by Pseudomonas aeruginosa flagellin. — J. Biol. Chem., 276, 41417–41423, 2001.

    Article  PubMed  Google Scholar 

  37. JI CM., CARDOSO W.V., GEBREMICHAEL A., PHILPOT R.M., BUCKPITT A.R., PLOPPER CG., PINKERTON K.E. — Pulmonary cytochrome-P-450 monooxygenase system and Clara cell-differentiation in rats — Am. J. Physiol. Lung Cell. Mol. Physiol., 13, L394–L402, 1995.

    Google Scholar 

  38. DEVEREUX T., DOMIN B., PHILPOT R. — Xenobiotic metabolism by isolated pulmonary cells. — Pharm. Ther., 41, 243–256, 1989.

    Article  CAS  Google Scholar 

  39. LEE C.H., WATT K.C., CHANG A.M., PLOPPER CG., BUCKPITT A.R., PINKERTON K.E. — Site-selective differences in cytochrome P450 isoform activities — Comparison of expression in rat and rhesus monkey lung and induction in rats. — Drug Metab. Dispos., 26, 396–400, 1998.

    PubMed  CAS  Google Scholar 

  40. MA J., BHAT M., ROJANASAKUL Y. — Drug metabolism and enzyme kinetics in the lung. In: Hickey A. (ed.) Inhalation Aerosols, Marcel Dekker, New York, 155–195, 1996.

    Google Scholar 

  41. RUNGE D.M., STOCK T.W., LEHMANN T., TAEGE C., BERNAUER U., STOLZ D.B., HOFMANN S., FOTH H. — Expression of cytochrome P450 2E1 in normal human bronchial epithelial cells and activation by ethanol in culture. — Arch. Toxicol., 75, 335–345, 2001.

    Article  PubMed  CAS  Google Scholar 

  42. KIVISTO K.T., LINDER A., FRIEDEL G., BEAUNE P., BELLOC C., KROEMER H.K., FRITZ P. — Immunohistochemical localization of cytochrome-P450 2E1 in human pulmonary-carcinoma and normal bronchial tissue. — Virch. Arch., 426, 243–247, 1995.

    CAS  Google Scholar 

  43. COLE S.P., BHARDWAJ G., GERLACH J.H., MACKIE J.E., GRANT CE., ALMQUIST K.C, STEWART A.J., KURZ E.U., DUNCAN A.M., DEELEY R.G. — Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. — Science, 258, 1650–1654, 1992.

    Article  PubMed  CAS  Google Scholar 

  44. JEDLITSCHKY G., LEIER I., BUCHOLZ U., CENTER M., KEPPLER D. — Atp-dependent transport of glutathione S-conjugates by the multidrug resistance-associated protein. — Cancer Res., 54, 4833–4836, 1994.

    PubMed  CAS  Google Scholar 

  45. JEDLITSCHKY G., LEIER I., BUCHOLZ U., BARNOUIN K., KURZ G., KEPPLER D. Transport of glutathione, glucuronate and sulfate conjugates byt the Mrp gene-encoded conjugate export pump. — Cancer Res., 56, 988–994, 1996.

    PubMed  CAS  Google Scholar 

  46. HAMILTON K.O., YAZDANIAN M.A., AUDUS K.L. — Modulation of P-glycoprotein activity in Calu-3 cells using steroids and beta-ligands. — Int. J. Pharm., 228, 171–179, 2001.

    Article  PubMed  CAS  Google Scholar 

  47. FLOREA B.I., CASSARA M.L., JUNGINGER H.E., BORCHARD G. — Drug transport and metabolism characteristics of the human airway epithelial cell line Calu-3. — J. Control. Rel., in press.

    Google Scholar 

  48. DEVISSAGUET J.P., BRION N., LHOTE O., DELOFFRE P. — Pulsed estrogen therapy: pharmacokinetics of intranasal 17-beta-estradiol (S21400) in postmenopausal women and comparison with oral and transdermal formulations. — Eur. J. Drug Metab. Pharmacokinet., 24, 265–271, 1999.

    Article  PubMed  CAS  Google Scholar 

  49. BAWARSHI-NASSER R.N., HUSSAIN A.A., CROOKS P.A. — Nasal absorption and metabolism of progesterone and 17D-estradiol in the rat. —. Drug Metab. Dispos., 17, 248–254, 1989.

    Google Scholar 

  50. OBERLI S.A., JONCOURT F., STADLER M., ALTERMATT HJ., BUSER K., RIS H.B., SCHMID U., CERNY T. — Parallel assessment of glutathione-based detoxifying enzymes, 06-alkylguanine-Dna alkyltransferase and P-glycoprotein as indicators of drug resistance in tumor and normal lung of patients with lung cancer. — Int. J. Cancer, 59, 629–636, 1994.

    Article  Google Scholar 

  51. ARVELO F., POUPON M.F., BICHAT F., GROSSIN F., BOURGEOIS Y., JACROT M., BASTIAN G., LECHE VALIER T. — Adding a reverser (verapamil) to combined chemotherapy overrides resistance in small cell lung cancer xenografts. — Eur. J. Cancer, 31 A, 1862–1868, 1995.

    Article  Google Scholar 

  52. NOOTER K., STOTER G. — Molecular mechanisms of multidrug resistance in cancer chemotherapy. — Pathol. Res. Pract., 192, 768–780, 1996.

    Article  PubMed  CAS  Google Scholar 

  53. GOTTESMANN M.M., PASTAN I. — Biochemistry of multidrug resistance mediated by the multidrug transporter. — Annu. Rev. Biochem., 62, 385–427, 1993.

    Article  Google Scholar 

  54. SCHINKEL A.H., SMIT J.J., VAN TELLINGEN O., BEIJNEN J.H., WAGENAAR E., VAN DEEMTER L., MOL CA., VAN DER VALK M.A., ROBANUS M.E., TE R.H., Et A. Disruption of the mouse mdrla P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. — Cell, 77, 491–501, 1994.

    Article  PubMed  CAS  Google Scholar 

  55. HAMILTON K.O., BACKSTROM G., YAZDANIAN M.A., AUDUS K.L. — P-glycoprotein efflux pump expression and activity in Calu-3 cells. — J. Pharm. Sci., 90, 647–658, 2001.

    Article  PubMed  CAS  Google Scholar 

  56. BERGAN T. — Extavascular penetration of ciprofloxacin. — Diagn. Microbiol. Infect. Dis., 13, 103–114, 1990.

    Article  PubMed  CAS  Google Scholar 

  57. CAVET M.E., WEST M., SIMMONS N.L. — Transepithelial transport of the fluoroquinolone ciprofloxacin by human airway epithelial Calu-3 cells. — Anitomicrob. Agents Chemotherap., 41, 2693–2698, 1997.

    CAS  Google Scholar 

  58. DERENDORF H., HOCHHAUS B., MEIBOHM B., MOLLMANN H., BARTH J. Pharmacokinetics and pharmacodynamics of inhaled corticosteroids. — J. Allergy Clin. Immunol., 101, 440–446, 1998.

    Article  Google Scholar 

  59. TUNEK, K. SJODIN AND G. HALLSTROM, Reversible formation of fatty acid esters of budesonide, an antiasthma glucocorticoid, iin human lung and liver microsomes. Drug Metab. Dispos. 25 (1997) 1311–1317.

    PubMed  CAS  Google Scholar 

  60. E. WIESLANDER, E.L. DESLANDER, L. JARKELID, E. HJERTBERG, A. TUNEK AND R. BRATTSAND, Pharmacologic importance of the reversible fatty acid conjugation of budesonide studies in a rat cell line in vitro. Am. J. Respir. Cell Mol. Biol. 19 (1998) 477–484.

    Article  PubMed  CAS  Google Scholar 

  61. BORCHARD G., LUZ CASSARA M., ROEMELE P.E.H., FLOREA B.I., JUNGINGER H.E. — Transport and local metabolism of budesonide in a human bronchial epithelial cell line (Calu-3). J. Pharm. Sci., 91, 1561–1567, 2002.

    Article  PubMed  CAS  Google Scholar 

  62. MATHIAS N.R., TIMOSZYK J., STETSKO P.I., MEGILL J.R., SMITH R.L., WALL D.A. Permeability characteristics of Calu-3 human bronchial epithelial cells: in vitro-in vivo correlation to predict lung absorption in rats. — J. Drug Target., 10, 31–40, 2002.

    Article  CAS  Google Scholar 

  63. FRAGA S., SERRAO M.P., SOARES DA SILVA P. — L-type amino acid transporters in two intestinal epithelial cell lines function as exchangers with neutral amino acid. — J. Nutr., 132, 733–738, 2002.

    PubMed  CAS  Google Scholar 

  64. BOLGER M.B., HAWORTH LS., YEUNG A.K., ANN D., VON GRAFENSTEIN H., HAMM-ALVAREZ S., OKAMOTO CG., KIM K.J., BASU S.K., WU S., LEE V.H.L. — Structure, function, and molecular modeling approaches to the study of the intestinal dipeptide transporter PepTl. — J. Pharm. Sci., 87, 1286–1291, 1998.

    Article  PubMed  CAS  Google Scholar 

  65. THEIS S., HARTRODT B., KOTTRA G., NEUBERT K., DANIEL H. — Defining minimal structural features in substrates of the H+/peptide cotransporter PEPT2 using novel amino acid and dipeptide derivatives. — Mol. Pharmacol., 61, 214–221, 2002.

    Article  PubMed  CAS  Google Scholar 

  66. GRONEBERG D.A., NICKOLAUS M., SPRINGER J., DöRING F., Daniel H., Fischer A. — Localization of the peptide transporter PEPT2 in the lung: Implications for pulmonary oligopeptide uptake. — Am. J. Pathol., 158, 707–714, 2001.

    Article  PubMed  CAS  Google Scholar 

  67. PEZRON I., MITRA R., PAL D., MITRA A.K. — Insulin aggregation and asymmetric transport across human bronchial epithelial cell monolayers (Calu-3). J. Pharm. Sci., 91, 1135–1146, 2002.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Borchard, G. (2003). Understanding the Mechanisms of Local Pulmonary Drug Absorption and Metabolism: An in Vitro Model of the Airway Epithelium. In: Gradoń, L., Marijnissen, J. (eds) Optimization of Aerosol Drug Delivery. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0267-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0267-6_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6436-3

  • Online ISBN: 978-94-017-0267-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics