Skip to main content

Fuzzy Compactness Via Categorical Closure Operators

  • Chapter
Topological and Algebraic Structures in Fuzzy Sets

Part of the book series: Trends in Logic ((TREN,volume 20))

  • 458 Accesses

Abstract

The Kuratowski-Mrówka result [12, 15] that a topological space X is compact if and only if the second projection map π Y : X × YY is closed for each topological space Y, has led to a number of categorical definitions of the notion of compactness.

Professor L. Stout is thanked for remarks which led to improvements in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Adámek, H. Herrlich, G. E. Strecker, Abstract and Concrete Categories: The Joy of Cats, Wiley Interscience Pure and Applied Mathematics, John Wiley & Sons (Brisbane/Chicester/New York/Singapore/Toronto), 1990.

    Google Scholar 

  2. I. W. Alderton, a-Compactness of fuzzy topological spaces: a categorical approach, Quaestiones Math. 20 (1997), 269–282.

    Article  MathSciNet  MATH  Google Scholar 

  3. I. W. Alderton, Compactness in topological categories, in: B Banaschewski, C. R. A. Gilmour, H. Herrlich, eds, Festschrift (On the Occasion of the 60th Birthday of Guillaume Brummer) incorporating Proceedings, Symposium on Categorical Topology, University of Cape Town, 1994, 9–16, Department of Mathematics and Applied Mathematics, University of Cape Town, 1999.

    Google Scholar 

  4. I. W. Alderton, G. Castellini, Closure operators and fuzzy connectedness, Fuzzy Sets and Systems 104 (1999), 397–405.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Cech, Topological Spaces, rev. ed. by Z. Frolik and M. Katétov, Publishing House of the Czechoslovak Academy of Sciences, Prague, WileyInterscience (London/New York), 1966.

    Google Scholar 

  6. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. M. Clementino, E. Giuli, W. Tholen, Topology in a category, Portugal. Math. 53 (1996), 397–433.

    MathSciNet  MATH  Google Scholar 

  8. D. Dikranjan, E. Giuli, Compactness, minimality and closedness with respect to a closure operator, in: J. Adâmek, S. MacLane, eds, Categorical Topology And Its Relations To Analysis, Algebra, And Combinatorics, Prague, Czechoslovakia, 1988, 284–296, World Scientific (Singapore et al.), 1989.

    Google Scholar 

  9. T. E. Gantner, R. C. Steinlage, R. H. Warren, Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62 (1978), 547–562.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Herrlich, G. Salicrup, G. E, Strecker, Factorizations, denseness, separation, and relatively compact objects, Topology Appl. 27 (1987), 157–169.

    Article  MathSciNet  MATH  Google Scholar 

  11. U. Höhle, A. Sostak, Axiomatic foundations of fixed-basis fuzzy topology, Chapter 3 in: U. Höhle, S. E. Rodabaugh, eds, Mathematics Of Fuzzy Sets: Logic, Topology, And Measure Theory, The Handbooks of Fuzzy Sets Series, Volume 3 (1999), Kluwer Academic Publishers (Boston/Dordrecht/London), pp. 123–272.

    Google Scholar 

  12. K. Kuratowski, Evaluation de la class borélienne d’un ensemble de points à l’aide des symboles logiques, Fund. Math. 17 (1931), 249–272.

    Google Scholar 

  13. R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56 (1976), 621–633.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. G. Manes, Compact Hausdorff objects, Gen. Topology Appl. 4 (1974), 341–360.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Mrówka, Compactness and product spaces, Colloq. Math. 7 (1959), 19–22.

    MathSciNet  MATH  Google Scholar 

  16. S. E. Rodabaugh, Categorical foundations of variable-basis fuzzy topology, Chapter 4 in: U. Höhle, S. E. Rodabaugh, eds, Mathematics Of Fuzzy Sets: Logic, Topology, And Measure Theory, The Handbooks of Fuzzy Sets Series, Volume 3 (1999), Kluwer Academic Publishers (Boston/Dordrecht/London), pp. 273–388.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Alderton, I.W. (2003). Fuzzy Compactness Via Categorical Closure Operators. In: Rodabaugh, S.E., Klement, E.P. (eds) Topological and Algebraic Structures in Fuzzy Sets. Trends in Logic, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0231-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0231-7_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6378-6

  • Online ISBN: 978-94-017-0231-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics