Skip to main content

Singular and Fredholm Integral Equations for Dirichlet Boundary Problems for Axial-Symmetric Potential Fields

  • Chapter
Factorization, Singular Operators and Related Problems

Abstract

We develop new methods for solving boundary problems for spatial axial-symmetric potential solenoid fields depending on the nature and specific features of axial-symmetric problems. The Dirichlet problems for the axial-symmetric potential and the Stokes flow function in a simply connected domain of the meridian plane are reduced to the Cauchy singular integral equations. If the boundary of a domain is a smooth curve satisfying certain additional requirements, then these singular integral equations are reduced to the Fredholm integral equations.

This research was supported in part by INTAS-99-00089 project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batchelor, G. K., An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge, 1967.

    MATH  Google Scholar 

  2. Gakhov, F. D., Boundary Value Problems. Pergamon Press, Oxford, New York, Paris, 1966. Extended Russian edition: Nauka, Moscow, 1977.

    Google Scholar 

  3. Heronimus, J. L., On some properties of function continues in the closed disk, Dokl. Akad. Nauk SSSR, 98 (1954), no. 6, 889–891 (in Russian).

    MathSciNet  Google Scholar 

  4. Lavrentyev, M. A. and Shabat, B. V., Problems of Hydrodynamics and Theirs Mathematical Models. Nauka, Moscow, 1977 (in Russian)

    Google Scholar 

  5. Loitsyanskii, L. G., Mechanics of Liquids and Gases. Nauka, Moscow, 1987 (in Russian).

    Google Scholar 

  6. Mel’nichenko, I. P. and Plaksa, S. A., Potential fields with axial symmetry and algebras of monogenic functions of vector variable, I, Ukr. Math. J., 48, (1996), no. 11, 1717–1730.

    Article  MathSciNet  MATH  Google Scholar 

  7. Mel’nichenko, I. P. and Plaksa, S. A., Potential fields with axial symmetry and algebras of monogenic functions of vector variable, II, Ukr. Math. J., 48, (1996), no. 12, 1916–1926.

    Article  MathSciNet  MATH  Google Scholar 

  8. Mel’nichenko, I. P. and Plaksa, S. A., Potential fields with axial symmetry and algebras of monogenic functions of vector variable, III, Ukr. Math. J., 49, (1997), no. 2, 253–268.

    Article  MathSciNet  Google Scholar 

  9. Mikhailov, L. G. and Radzhabov, N., An analog of the Poisson formula for certain second order equations with a singular curve, Dokl. Akad. Nauk Tadzh. SSR, 15 (1972), no. 11, 6–9 (in Russian).

    Google Scholar 

  10. Plaksa, S., Boundary properties of axial-symmetrical potential and Stokes flow function. In: Finite or Infinite Dimensional Complex Analysis: Proceedings of the Seventh International Colloquium, Lecture Notes in Pure and Applied Mathematics, 214, 443–455. Marcel Dekker Inc., New York, 2000.

    Google Scholar 

  11. Plaksa, S., Algebras of hypercomplex monogenic functions and axial-symmetrical potential fields, In: Proceedings of the Second ISAAC Congress, Fukuoka, August 16 – 21, 1999, 613–622. Kluwer Academic Publishers, Dordrecht, 2000.

    Google Scholar 

  12. Plaksa, S. A., Dirichlet problem for axisymmetric potential fields in a disk of the meridian plane, I. Ukr. Math. J., 52 (2000), no. 4, 564–585.

    Article  MathSciNet  MATH  Google Scholar 

  13. Plaksa, S. A., Dirichlet problem for axisymmetric potential fields in a disk of the meridian plane, II. Ukr. Math. J., 52 (2000), no. 6, 748–757.

    Article  MathSciNet  MATH  Google Scholar 

  14. Privalov, I. I., Boundary Properties of Analytic Functions. Gostekhizdat, Moscow, Leningrad, 1950 (in Russian).

    Google Scholar 

  15. Radzhabov, N., Construction of potentials and investigation of interior and exterior boundary value problems of Dirichlet and Neumann types for the Euler—Poisson—Darboux equations on the plane, Dokl. Akad. Nauk Tadzh. SSR, 17 (1974), no. 8, 7–11 (in Russian).

    Google Scholar 

  16. Warschawski, S. E., On differentiability at the boundary in conformal mapping, Proc. Amer. Math. Soc., 12 (1961), no. 4, 614–620.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to G. S. Litvinchuk on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Plaksa, S. (2003). Singular and Fredholm Integral Equations for Dirichlet Boundary Problems for Axial-Symmetric Potential Fields. In: Samko, S., Lebre, A., dos Santos, A.F. (eds) Factorization, Singular Operators and Related Problems. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0227-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0227-0_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6333-5

  • Online ISBN: 978-94-017-0227-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics