Skip to main content

Hadamard and Dragomir-Agarwal Inequalities, the Euler Formulae and Convex Functions

  • Chapter
Functional Equations, Inequalities and Applications
  • 425 Accesses

Abstract

The Euler formula is used with functions possessing various convexity and concavity properties to derive inequalities pertinent to numerical integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. I.S. Berezin and N.P. Zhidkov: ‘Computing methods, Vol. I’, Pergamon Press, Oxford—London—Edinburgh—New York—Paris—Frankfurt, 1965.

    Google Scholar 

  2. Lj. Dedié, C.E.M. Pearce and J. Pearie: Hadamard and DragomirAgarwal inequalities, higher-order convexity and the Euler formula’, J. Korean Math. Soc 38 (2001), 1235–1243.

    MathSciNet  Google Scholar 

  3. Lj. Dedié, C.E.M. Pearce and J. Pecarié: The Euler formulae and convex functions’, Math. Inequal. Appl 3 No. 2 (2000), 211–221.

    Google Scholar 

  4. Lj. Dedié, M. Matie and J. Pecarié: On Euler—Simpson formulae’, PanAmer. Math. J 11 No. 2 (2001), 47–64.

    Google Scholar 

  5. Lj. Dedié, M. Matié and J. Pecarié: On dual Euler—Simpson formulae’, Bull. Belg. Math. Soc 8 (2001), 479–504.

    Google Scholar 

  6. Lj. Dedié, M. Matié, J. Pecarié and A. Vukelie: On Euler—Simpson 3/8 formulae’ (submited).

    Google Scholar 

  7. Lj. Dedié, M. Matir and J. Pecarié: On Euler—Maclaurin formulae’, Math. Inequal. Appl (to appear).

    Google Scholar 

  8. S.S. Dragomir and R.P. Agarwal: Two inequalities for differentiable mappings and applications to special means of real numbers and to trapesoidal formula’, Appl. Mat. Lett 11 No. 5 (1998), 91–95.

    Google Scholar 

  9. V.I. Krylov: ‘Approximate calculation of integrals’, The MacMillan Comp., New York, 1962.

    MATH  Google Scholar 

  10. M. Matié, C.E.M. Pearce and J. Pecarié: Two-point formulae of Euler type’, ANZIAM J (to appear).

    Google Scholar 

  11. C.E.M. Pearce and J. Pdaric: Inequalities for differentiable mappings and applications to special means and quadrature formulas’, Appl. Math. Lett 13 (2000), 51–55.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pečarić, J., Vukelić, A. (2003). Hadamard and Dragomir-Agarwal Inequalities, the Euler Formulae and Convex Functions. In: Rassias, T.M. (eds) Functional Equations, Inequalities and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0225-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0225-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6406-6

  • Online ISBN: 978-94-017-0225-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics