Skip to main content

Hyers-Ulam Stability of a Quadratic Functional Equation in Banach Modules

  • Chapter
Functional Equations, Inequalities and Applications

Abstract

We extend the Hyers-Ulam-Rassias stability of a quadratic functional equation f(x + y + z) + f(xy) + f(yz) + f(xz) = 3f(x) + 3f(z) + 3f(z) to Banach modules over a Banach algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.-H. Bae and I.-S. Chang: On the Ulam stability problem of a quadratic functional equation’, Korean J. Comput. & Appl. Math. (Series A) 8 (2001), 561–567.

    Google Scholar 

  2. J.-H. Bae and H.-M. Kim: On the generalized Hyers-Ulam stability of a quadratic mapping’, Far East J. Math. Sci. 3 (2001), 599–608.

    MathSciNet  MATH  Google Scholar 

  3. C. Borelli and G. Forti: On a general Hyers-Ulam stability result’, Internat. J. Math. Math. Sci. 18 (1995), 229–236.

    Article  MathSciNet  MATH  Google Scholar 

  4. P.W. Cholewa: Remarks on the stability of functional equations’, Aequationes Math. 27 (1984), 76–86.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Czerwik: On the stability of the quadratic mapping in the normed space’, Abh. Math. Sem. Hamburg 62 (1992), 59–64.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Gävruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings’, J. Math. Anal. and Appl. 184 (1994), 431–436.

    Article  MathSciNet  Google Scholar 

  7. D.H. Hyers: On the stability of the linear functional equation’, Proc. Nat. Acad. Sci. USA 27 (1941), 222–224.

    Article  MathSciNet  Google Scholar 

  8. D.H. Hyers, G. Isac and Th.M. Rassias:Stability of Functional Equations in Several Variables’Birkhäuser, Berlin, Basel and Boston, 1998.

    Google Scholar 

  9. K.-W. Jun and Y.-H Lee: On the Hyers—Ulam—Rassias stability of a Pexiderized quadratic inequality’, Math. Ineq. Appl. 4 (2001), 93–118.

    MathSciNet  MATH  Google Scholar 

  10. Th.M. Rassias: On the stability of the linear mapping in Banach spaces’ Proc. Amer. Math. Soc. 72 (1978), 297–300.

    Google Scholar 

  11. Th.M. Rassias: On the stability of the quadratic functional equation’ Mathematica (to appear),.

    Google Scholar 

  12. Th.M. Rassias: On the stability of functional equations and a problem of Ulam’ Acta Applicandae Mathematicae 62 (2000), 23–130.

    Google Scholar 

  13. Th.M. Rassias and P. Semrl: On the Hyers—Ulam stability of linear mappings’, J. Math. Anal. Appl. 173 (1993), 325–338.

    Article  MathSciNet  MATH  Google Scholar 

  14. Th.M. Rassias and J. Tabor: What is left of Hyers—Ulam stability?’ J. Nat. Geom. 1 (1992), 65–69.

    Google Scholar 

  15. F. Skof: Proprietà locali e approssimazione di operatori’, Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129.

    Google Scholar 

  16. S.M. Ulam: Problems in Modern Mathematics’Wiley, New York, 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bae, JH., Park, WG. (2003). Hyers-Ulam Stability of a Quadratic Functional Equation in Banach Modules. In: Rassias, T.M. (eds) Functional Equations, Inequalities and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0225-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0225-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6406-6

  • Online ISBN: 978-94-017-0225-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics