Skip to main content
  • 428 Accesses

Abstract

The Cauchy functional equation and the Cauchy-Pexider functional equation are generalized, and their solutions are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Aczél: ‘General solutions of a functional equation connected with a characterization of statistical distributions’, In: Statistical distributions in scientific work 3 (1975), D. Reidel Publ. Co., Holland, pages 47–55.

    Google Scholar 

  2. Hiroshi Haruki and Themistocles M. Rassias: ‘A new functional equation of Pexider type related to the complex exponential function’, Trans. Amer. Math. Soc. 347 (8) (1995), 3111–3119.

    Article  MathSciNet  MATH  Google Scholar 

  3. D.H. Hyers, G. Isac, and Th. M. Rassias: ‘On the asymptoticity aspect of Hyers—Ulam stability of mappings’, Proc. Amer. Math. Soc. 126 (2) (1998), 425–430.

    Article  MathSciNet  MATH  Google Scholar 

  4. Donald H. Hyers, George Isac, and Themistocles M. Rassias: ‘Stability of Functional Equations in Several Variables’, Birkhäuser Boston Inc., Boston, MA, 1998.

    Book  MATH  Google Scholar 

  5. Donald H. Hyers and Themistocles M. Rassias: ‘Approximate homomorphisms’, Aequat. Math. 44 (2–3) (1992), 125–153.

    Article  MATH  Google Scholar 

  6. George Isac and Themistocles M. Rassias: ‘On the Hyers—Ulam stability of 0-additive mappings’, J. Approx. Theory 72 (2) (1993), 131–137.

    Article  MathSciNet  MATH  Google Scholar 

  7. George Isac and Themistocles M. Rassias: ‘Stability of 0-additive mappings: applications to nonlinear analysis’, Internat. J. Math. Math. Sci. 19 (2) (1996), 219–228.

    Article  MathSciNet  MATH  Google Scholar 

  8. K.G. Janardan: ‘Characterizations of certain discrete distributions’, In: Statistical distributions in scientific work 3 (1975), D. Reidel Publ. Co., Holland, pages 359–364.

    Google Scholar 

  9. H. Kaufman: ‘A bibliographical note on higher order sine functions’, Scripta Math. 28 (1967), 29–36.

    MathSciNet  MATH  Google Scholar 

  10. A.K. Kwasniewski and B.K. Kwasniewski: ‘On trigonometric-like decompositions of functions with respect to the cyclic group of order n’, J. Appl. Anal. 8 (1) (2002), in print.

    Google Scholar 

  11. Martin E. Muldoon and Abraham A. Ungar: ‘Beyond sin and cos’, Math. Mag. 69 (1) (1996), 3–14.

    Article  MathSciNet  MATH  Google Scholar 

  12. Th.M. Rassias and J. Tabor: ‘What is left of Hyers—Ulam stability?’, J. Natur. Geom. 1 (2) (1992), 65–69.

    MathSciNet  MATH  Google Scholar 

  13. Themistocles M. Rassias: ‘On the stability of the linear mapping in Ba-nach spaces’, Proc. Amer. Math. Soc. 72 (2) (1978), 297–300.

    Article  MathSciNet  MATH  Google Scholar 

  14. Themistocles M. Rassias (Ed.): ‘Topics in Mathematical Analysis (A volume dedicated to the memory of A.-L. Cauchy)’, World Scientific Publishing Co. Inc., Teaneck, NJ, 1989.

    Google Scholar 

  15. Themistocles M. Rassias: ‘On a problem of S. M. Ulam and the asymptotic stability of the Cauchy functional equation with applications’, In: General inequalities (Oberwolfach, 1995) 7 (1997), pp. 297–309, Birkhäuser, Basel.

    Google Scholar 

  16. Themistocles M. Rassias. Stability and set-valued functions. In: Analysis and topology, World Sci. Publishing, River Edge, NJ, 1998, pp. 585–614.

    Google Scholar 

  17. Themistocles M. Rassias (Ed.): ‘Functional Equations and Inequalities’, Kluwer Academic Publishers, Dordrecht, 2000.

    MATH  Google Scholar 

  18. Themistocles M. Rassias: ‘On the stability of functional equations in Ba-nach spaces’, J. Math. Anal. Appl. 251 (1) (2000), 264–284.

    Article  MathSciNet  MATH  Google Scholar 

  19. Themistocles M. Rassias: ‘The problem of S. M. Ulam for approximately multiplicative mappings’, J. Math. Anal. Appl. 246 (2) (2000), 352–378.

    Article  MathSciNet  MATH  Google Scholar 

  20. Themistocles M. Rassias and Jaromfr Simsa: ‘Finite Sums Decompositions in Mathematical Analysis’, A Wiley—Interscience Publication, John Wiley & Sons Ltd., Chichester, 1995.

    Google Scholar 

  21. Themistocles M. Rassias and Józef Tabor (Eds.): ‘Stability of Mappings of Hyers—Ulam Type’, Hadronic Press Inc., Palm Harbor, FL, 1994.

    MATH  Google Scholar 

  22. Abraham A. Ungar: ‘Addition theorems for solutions to linear homogeneous constant coefficient ordinary differential equations’, Aequati. Math. 26 (1) (1983), 104–112.

    Article  MathSciNet  MATH  Google Scholar 

  23. Abraham A. Ungar: ‘Higher order a-hyperbolic functions’, Indian J. Pure Appl. Math. 15 (3) (1984), 301–304.

    MathSciNet  MATH  Google Scholar 

  24. Abraham A. Ungar: ‘Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces’, Kluwer Academic Publishers, Dordrecht—Boston—London, 2001

    Google Scholar 

  25. Abraham A. Ungar: ‘Applications of hyperbolic geometry in relativity physics’, In: Janos Bolyai Memorial Volume, A. Prekopa, E. Kiss, Gy. Staar and J. Szenthe (Eds.), Vince Publisher, Budapest, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ungar, A.A. (2003). The Generalized Cauchy Functional Equation. In: Rassias, T.M. (eds) Functional Equations, Inequalities and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0225-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0225-6_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6406-6

  • Online ISBN: 978-94-017-0225-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics