Skip to main content

Physiological responses and structural modifications in Atriplex halimus L. plants exposed to salinity

  • Conference paper
Cash Crop Halophytes: Recent Studies

Part of the book series: Tasks for Vegetation Science ((TAVS,volume 38))

Abstract

The deleterious effects owing to the presence of salt in the plants’ environment could be resumed in three points: (i) a water stress, resulting from the decrease of the water availability, following to the lowering of water potential in the medium with regard to the plant’s tissues, (ii) a toxic action which disrupts the metabolic activity of the cell and (iii) a nutritional stress generated by high-salt concentrations (Bajji et al., 1998). For example, Na+ competes for the absorption sites with K+ and Ca++, and Cl with nitrates and phosphate. On the other hand, salinity affects several and important metabolic processes in the plant, as the absorption of water and nutrients, the osmotic adjustment, photosynthesis, but also the protein synthesis and enzyme activity (Levigneron et al., 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 1949; 241–15.

    Google Scholar 

  • Ayadi, A., Monnier, A., Demarty, M. and Thellier, M.: Echanges ioniques cellulaires: cas des plantes en milieu salé. Rôle particulier des parois cellulaires. Physiol Vég 1980; 18: 89–104.

    CAS  Google Scholar 

  • Ayala, E and O’Leary, J.W.: Growth and physiology of Salicornia bigelovü Torr. at sub-optimal salinity. Int J Plant Sci 1995; 156: 197–205.

    Article  Google Scholar 

  • Bajji, M., Kinet, J.M. and Lutts, S.: Salt stress effects on roots and leaves of Atriplex halimus L. and their corresponding callus cultures. Plant Sci 1998; 137: 131–42.

    Article  CAS  Google Scholar 

  • Banuls, J., Serna, M.D., Legaz, E, Talon, M. and Primo-Millo, E.: Growth and gas exchange parameters of Citrus plants stressed with different salts. J Plant Physiol 1997; 150: 194–9.

    Article  CAS  Google Scholar 

  • Ben Ahmed, H., Zid, E., El Gazzah, M. and Grignon, C.: Croissance et accumulation ionique chez A triplex halimus L. Cahiers Agricult 1995; 5: 367–72.

    Google Scholar 

  • Benzioni, A., Nerd, A., Rosengärtner, Y. and Mills, D.: Effect of NaC1 salinity on growth and development of Jojoba clones: I. Young plants. J. Plant Physiol 1992; 139: 731–6.

    Article  CAS  Google Scholar 

  • Binet, P.: Métabolisme et adaptations des végétaux supérieurs aux contraintes hydriques, thermiques et salines. Bull Ecol 1989; 20: 41–9.

    Google Scholar 

  • Botella, M.A., Martinez, V, Pardines, J. and Cerda, A.: Salinity induced potassium deficiency in Maize plants. J Plant Physiol 1997; 150: 200–5.

    Article  CAS  Google Scholar 

  • Breckle, S.W.: How do halophytes overcome salinity? In Khan, M.A. and Ungar, I.A., editors. Biology of salt tolerant plants. Dept. of Botany, University of Karachi, Pakistan, 1995; 199–213.

    Google Scholar 

  • Clipson, N.J.W.: Salt tolerance in the halophyte Suaeda maritima L. Dum. Growth, ion and water relations and gas exchange in response to altered salinity. J Exp Bot 1987; 38: 1996–2004.

    Article  Google Scholar 

  • Flowers, T.J.: Salt tolerance in Suaeda maritima (L.) Dum. The effect of sodium chloride on growth, respiration, and soluble enzymes in a comparative study with Pisum sativum L. J Exp Bot 1972; 23: 310–21.

    Article  CAS  Google Scholar 

  • Flowers, Ti.,. Troke, P.F. and Yeo, A.R.: The mechanism of salt tolerance in halophytes. Ann Rev Plant Physiol 1977; 28: 89–121.

    Article  Google Scholar 

  • Freitas, H. and Breckle, S.W.: Importance of bladder hairs for seedlings of some Atriplex species. Mésogée 1993a; 53: 47–54.

    Google Scholar 

  • Freitas, H. and Breckle, S.W.: Accumulation of nitrate in bladder hairs of Atriplex species. Plant Physiol Biochem 1993b; 31: 887–92.

    CAS  Google Scholar 

  • Gale, J. and Poljakoff-Mayber, A. Interrelations between growth and photosynthesis of salt bush (Atriplex halimus L.) grown in saline media. Aust J Sci 1970; 23: 947–52.

    CAS  Google Scholar 

  • Glenn, E., Pfister, R., Brown, J., Lewis Thompson, T. and O’Leary, J.: Na and K accumulation and salt tolerance of Atriplex canescens (Chenopodiaceae) genotypes. Am J Bot 1996; 83: 997–1005.

    Article  CAS  Google Scholar 

  • Hagège, D., Kevers, C., Boucaud, J. and Gaspar, T.: Activités peroxydasiques, production d’éthylène, lignification et limitation de croissance chez Suaeda maritima cultivé en l’absence de NaCl. Plant Physiol Biochem 1988; 26: 609–14.

    Google Scholar 

  • Handley, J.F. and Jennings, D.H.: The effect of ions on growth and leaf succulence of Atriplex hortensis var. cupreata. Ann Bot 1977; 41: 1109–12.

    CAS  Google Scholar 

  • Heller, R., Esnault, R. and Lance, C.: Physiologie Végétale. 1. Nutrition, Masson Ed, Paris, 1993.

    Google Scholar 

  • Kaplan, A. and Gale, J.: Effect of sodium chloride salinity on the water balance of Atriplex halimus. Aust J Biol Sci 1972; 25: 895–903.

    CAS  Google Scholar 

  • Köhl, K.I.: The effect of NaCI on growth, dry matter allocation and ion uptake in salt marsh and inland populations of Armeria maritima. New Phytol 1997; 135: 213–25.

    Article  Google Scholar 

  • Kore-Eda, S., Yamashita, T. and Kanai, R.: Induction of light dependent pyruvate transport into chloroplasts of Mesembryanthemum crystallinum by salt stress. Plant Cell Physiol 1996; 37: 257–62.

    Article  CAS  Google Scholar 

  • Lee, T.T.: On extraction and quantification of plant Peroxidase isoenzymes. Physiol Plant 1973; 29: 198–203.

    Article  CAS  Google Scholar 

  • Le Saos,: J. Migration du calcium vers les organes aériens chez une halophyte Cochlearia anglica. Effets du NaCl. Physiol. Vég 1976; 14: 381–90.

    CAS  Google Scholar 

  • Levigneron, A., Lopez, F., Vansuyt, G., Berthomieu, E, Fourcroy, P. and Casse-Delbart, E Les plantes face au stress salin. Cahiers Agricult 1995; 4: 263–73.

    Google Scholar 

  • Longstreth, D.J. and Nobel, P.S.: Salinity effects on leaf anatomy. Consequences for Photosynthesis. Plant Physiol 1979; 63: 700–3.

    Article  PubMed  CAS  Google Scholar 

  • Marcum, K.B. and Murdoch, C.L.: Salt tolerance of the coastal marsh grass Sporobulus virginicus (L.) Kunth. New Phytol 1992: 120: 281–8.

    Article  CAS  Google Scholar 

  • Mc Cue, K.F. and Hanson, A.D.: Drought and salt tolerance: towards understanding and application. Tibtech 1990; 8: 359–62.

    Google Scholar 

  • Murata, S., Kobayashi, M., Matoh, T. and Sekiya, J. Sodium stimulates regeneration of Phosphoenolpyruvate in mesophyll chloroplasts of Amaranthus tricolor. Plant Cell Physiol 1992: 33: 1247–50.

    CAS  Google Scholar 

  • Osmond, C.B., Bjorkmann, O. and Anderson, D.J.: Physiological processes in plant ecology: towards a synthesis with Atriplex, Springler-Verlag, Berlin, 1980.

    Book  Google Scholar 

  • A. Debez, W. Chaibi and S. BouzidOsmond, C.B. and Greenway, H.: Salt responses of carboxylation enzymes from species differing in salt tolerance. Plant Physiol 1972; 49: 260–3.

    Article  Google Scholar 

  • Passera, C. and Albuzio, A.: Effect of salinity on photosynthesis and photorespiration of two wheat species (Triticum durum cv. PEPE 2122 and Triticum aestivum cv. Marzotto). Can J Bot 1977; 56: 121–26.

    Article  Google Scholar 

  • Sato, Y., Sugiyama, M., Gorecki, R.J., Kukuda, H. and Komamine, A.: Interrelationship between lignin deposition and the activities of Peroxidase isoenzymes in differentiating tracheary elements of Zinnia. Planta 1993; 189: 584–89.

    Article  CAS  Google Scholar 

  • Schrimer, U. and Breckle, S.W.: The role of bladders for salt removal in some Chenopodiaceae (mainly Atriplex species). In Sen, D.N. and Rajpurohit, K.S., editors. Contributions to the ecology of halophytes. Tasks for vegetation science, Vol. 2, Dr. W.J. Junk Publishers, The Hague. 1982; 215–31

    Google Scholar 

  • Shomer-Ilan, A., Neumann-Ganmore, R. and Waisel, Y.: Biochemical specialisation of photosynthetic cell layers and carbon flow paths in Suaeda monoica. Plant Physiol 1979; 64: 963–5.

    Article  PubMed  CAS  Google Scholar 

  • Shomer-Ilan, A. and Waisel, Y.: The effect of sodium chloride on the balance between the C3 and C4 carbon fixation pathways. Physiol Plant 1973; 29: 190–3.

    Article  CAS  Google Scholar 

  • Smaoui, A.: Différenciation des trichomes chez Atriplex halimus L. CR Acad Sci Paris 1971; 273: 1268–71.

    Google Scholar 

  • Stassart, J.M., Neirinckx, L. and Dejaegere, R.: The interactions between monovalent cations and calcium during their adsorption on barley roots. Ann. Bot 1981; 47: 647–52.

    CAS  Google Scholar 

  • Storey, R., Pitman, M.G., Steltzer, R. and Carter, C.: X-Ray microanalysis of cells and cell compartments of Atriplex spongiosa. I. Leaves. J Exp Bot 1983; 34: 778–94.

    Article  CAS  Google Scholar 

  • Storey, R. and Wyn Jones, W.G.: Responses of Atriplex spongiosa and Suaeda monoïca to salinity. Plant Physiol 1979; 63: 156–62.

    Article  PubMed  CAS  Google Scholar 

  • Thiyagarajah, M., Fry, S.C. and Yeo, A.R.: In vitro salt tolerance of cell wall enzymes from halophytes and glycophytes. J Exp Bot 1996; 47: 1717 24.

    Google Scholar 

  • Wang, L.W., Showalter, A.M. and Ungar, I.A.: Effect of salinity on growth, ion content, and cell wall chemistry in Atriplex prostrata (Chenopodiaceae). Am J Bot 1997; 84: 1247–55.

    Article  PubMed  CAS  Google Scholar 

  • Yeo, A.R.: Salinity resistance: Physiologies and prices. Physiol Plant 58: 214–22.

    Google Scholar 

  • Yeo, A.R. and Flowers, T.J.: Ion transport in Suaeda maritima: its relation to growth and implications for the pathway of radial transport of ions across the root. J Exp Bot 1986; 37: 143–59.

    Article  Google Scholar 

  • Zid, E. and Grignon, C.: Sodium-Calcium interactions in leaves of Citrus aurantium grown in the presence of NaCl. Physiol Vég (1985); 23: 895–903.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Debez, A., Chaibi, W., Bouzid, S. (2003). Physiological responses and structural modifications in Atriplex halimus L. plants exposed to salinity. In: Lieth, H., Mochtchenko, M. (eds) Cash Crop Halophytes: Recent Studies. Tasks for Vegetation Science, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0211-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0211-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6256-7

  • Online ISBN: 978-94-017-0211-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics