Skip to main content

Immunoglobulin synthesis and secretion

  • Chapter
Monoclonal Gammopathies and the Kidney

Abstract

Immunoglobulins (antibodies) are a family of glycoproteins that are produced by plasma cells. All immunoglobulin molecules consist of a unit composed of two identical light (L) chain polypeptide chains and two identical heavy (H) polypeptide chains linked together by disulfide bonds (H2L2). The L and H chains fold into functional domains, two for the L chain and four or five for the H chain. The N-terminal domain from each chain forms the variable regions, VL and VH, which together constitute the antigen-binding site. The rest of the molecule has a relatively constant (C) structure. The variable regions with the constant region of the L chain and the first constant region domain of the H chain constitute an Fab region. The remaining constant region domains of the H chain make up the Fc region. Immunoglobulin molecules follow several different assembly and secretion pathways and have characteristic post-translational modifications that can contribute to their diverse functional capacities. Alterations in post-translational modification can be associated with significant diseases such as rheumatoid arthritis1,2 and IgA nephropathy3,4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rademacher TW, Parekh RB, Dwek RA et al. The role of IgG glycoforms in the pathogenesis of rheumatoid arthritis. Springer Semin Immunopathol. 1988;10:231–49.

    Article  PubMed  CAS  Google Scholar 

  2. Parekh RB, Dwek RA, Sutton BJ et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature. 1985;316:452–7.

    Article  PubMed  CAS  Google Scholar 

  3. Allen AC, Harper S J, Feehally J. Galactosylation of N- and O-linked carbohydrate moieties of IgAl and IgG in IgA nephropathy. Clin Exp Immunol. 1995;100:470–4.

    Article  PubMed  CAS  Google Scholar 

  4. Roccatello D, Picciotto G, Torchio M et al. Removal systems of immunoglobulin A and immunoglobulin A containing complexes in IgA nephropathy and cirrhosis patients. The role of asialoglycoprotein receptors. Lab Invest. 1993;69:714–23.

    PubMed  CAS  Google Scholar 

  5. Angal S, King DJ, Bodmer MW et al. A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody. Mol Immunol. 1993;30:105–8.

    Article  PubMed  CAS  Google Scholar 

  6. Sox HC, Hood L, Coloma MJ, Trinh RK, Martinez AR, Morrison SL. Attachment of carbohydrate to the variable region of myeloma immunoglobulin light chains. Proc Natl Acad Sei USA. 1970;66:975–82.

    Article  CAS  Google Scholar 

  7. Abel CA, Spiegelberg HL, Grey HM et al. The carbohydrate contents of fragments and polypeptide chains of human gamma-G-myeloma proteins of different heavy-chain subclasses. Biochemistry. 1968;7:1271–8.

    Article  PubMed  CAS  Google Scholar 

  8. Coloma M J, Trinh RK, Martinez AR, Morrison SL. Position effects of variable region carbohydrate on the affinity and in vivo behavior of an anti-(l—>6) dextran antibody. J Immunol. 1999;162:2162–70.

    PubMed  CAS  Google Scholar 

  9. Wright A, Tao MH, Kabat EA, Morrison SL. Antibody variable region glycosylation: position effects on antigen binding and carbohydrate structure. EMBO J. 1991;10:2717–23.

    PubMed  CAS  Google Scholar 

  10. Wallick SC, Kabat EA, Morrison SL. Glycosylation of a VH residue of a monoclonal antibody against alpha (1–6) dextran increases its affinity for antigen. J Exp Med. 1988;168:1099–109.

    Article  PubMed  CAS  Google Scholar 

  11. Mathov I, Plotkin LI, Squiquera L, Fossati CA, Margni RA, Leoni J. N-glycanase treatment of F(ab’)2 derived from asymmetric murine IgG3 mAb determines the acquisition of precipitating activity. Mol Immunol. 1995;32:1123–30.

    Article  PubMed  CAS  Google Scholar 

  12. Co MS, Scheinberg DA, Avdalovic NM et al. Genetically engineered deglycosylation of the variable domain increases the affinity of an anti-CD33 monoclonal antibody. Mol Immunol. 1993;30:1361–7.

    Article  PubMed  CAS  Google Scholar 

  13. Rudd PM, Leatherbarrow RJ, Rademacher TW et al. Diversification of the IgG molecule by oligosaccharides. Mol Immunol. 1991;28:1369–78.

    Article  PubMed  CAS  Google Scholar 

  14. Nose M, Wigzell H, Kuhn LC, Kraehenbuhl JP. Biological significance of carbohydrate chains on monoclonal antibodies. Proc Natl Acad Sei USA. 1983;80:6632–6.

    Article  CAS  Google Scholar 

  15. Leatherbarrow RJ, Rademacher TW, Dwek RA et al. Effector functions of a monoclonal aglyco-sylated mouse IgG2a: binding and activation of complement component CI and interaction with human monocyte Fc receptor. Mol Immunol. 1985;22:407–15.

    Article  PubMed  CAS  Google Scholar 

  16. Tao MH, Morrison SL, Kuhn LC, Kraehenbuhl JP. Studies of aglycosylated chimeric mouse-human IgG. Role of carbohydrate in the structure and effector functions mediated by the human IgG constant region. J Immunol. 1989;143:2595–601.

    PubMed  CAS  Google Scholar 

  17. Rademacher TW, Parekh RB, Dwek RA. Glycobiology. Annu Rev Biochem. 1988;57:785–838.

    Article  PubMed  CAS  Google Scholar 

  18. Axford JS, Sumar N, Alavi A et al. Changes in normal glycosylation mechanisms in autoimmune rheumatic disease. J Clin Invest. 1992;89:1021–31.

    Article  PubMed  CAS  Google Scholar 

  19. Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med. 1995;1:237–43.

    Article  PubMed  CAS  Google Scholar 

  20. Wright A, Morrison SL. Effect of C2-associated carbohydrate structure on Ig effector function: studies with chimeric mouse-human IgGl antibodies in glycosylation mutants of Chinese hamster ovary cells. J Immunol. 1998; 160:3393–102.

    PubMed  CAS  Google Scholar 

  21. Koshland ME. The coming of age of the immunoglobulin J chain. Annu Rev Immunol. 1985;3:425–53.

    Article  CAS  Google Scholar 

  22. Pumphrey R. Computer models of the human immunoglobulins. Immunol Today. 1986;7:174–8.

    Article  CAS  Google Scholar 

  23. Futiger S, Hughes GI, Paquet N, Luthy R, Jaton J-C. Disulfide bond assignment in human J chain and its covalent pairing with immunoglobulin M. Biochemistry. 1992;31:12643–7.

    Google Scholar 

  24. Cattaneo A, Neuberger MS, Wright A, Morrison SL. Polymeric immunoglobulin M is secreted by transfectants of non-lymphoid cells in the absence of immunoglobulin J chain. EMBO J. 1987;6:2753–8.

    CAS  Google Scholar 

  25. Atkin JD, Pleass RJ, Owens RJ, Woof JM. Mutagenesis of the human IgAl heavy chain tailpiece that prevents dimer assembly. J Immunol. 1996;157:156–9.

    PubMed  CAS  Google Scholar 

  26. Wiersma EJ, Chen F, Bazin R et al. Analysis of IgM structures involved in J chain incorporation. J Immunol. 1997;158:1719–26.

    CAS  Google Scholar 

  27. Mattu TS, Pleass RJ, Willis AC et al. The glycosylation and structure of human serum IgAl, Fab, and Fc regions and the role of N-glycosylation on Fc alpha receptor interactions. J Biol Chem. 1998;273:2260–72.

    Article  PubMed  CAS  Google Scholar 

  28. Wormald MR, Wooten EW, Bazzo R et al. The conformational effects of N-glycosylation on the tailpiece from serum IgM. Eur J Biochem. 1991;198:131–9.

    Article  PubMed  CAS  Google Scholar 

  29. Yoo EM, Coloma MJ, Trinh KR et al. Structural requirements for polymeric immunoglobulin assembly and association with J chain. J Biol Chem. 1999;274:33771–7.

    Article  CAS  Google Scholar 

  30. Brewer JW, Randall TD, Parkhouse RM, Corley RB. Mechanism and subcellular localization of secretory IgM polymer assembly. J Biol Chem. 1994;269:17338–8.

    PubMed  CAS  Google Scholar 

  31. Bornemann KD, Brewer JW, Beck-Engeser GB, Corley RB, Haas IG, Jack HM. Roles of heavy and light chains in IgM polymerization. Proc Natl Acad Sei USA. 1995;92:4912–6.

    Article  CAS  Google Scholar 

  32. Davis AC, Roux KH, Shulman MJ. On the structure of polymeric IgM. Eur J Immunol. 1988;18:1001–8.

    Article  PubMed  CAS  Google Scholar 

  33. Randall TD, Brewer JW, Corley RB. Direct evidence that J chain regulates the polymeric structure of IgM in antibody-secreting B cells. J Biol Chem. 1992;267:18002–7.

    PubMed  CAS  Google Scholar 

  34. Davis AC, Roux KH, Pursey J, Shulman MJ, Brown WR, Klöppel TM. Intermolecular disulfide bonding in IgM: effects of replacing cysteine residues in the mu heavy chain. EMBO J. 1989;8:2519–26.

    PubMed  CAS  Google Scholar 

  35. Childers NK, Bruce MG, McGhee JR, Kuhn LC, Kraehenbuhl JR Molecular mechanisms of immunoglobulin A defense. Annu Rev Microbiol. 1989;43:503–36.

    Article  PubMed  CAS  Google Scholar 

  36. Kunkel HG, Smith WK, Joslin FG, Natvig JB, Litwin SD. Genetic marker of the gamma-A2 subgroup of gamma-A immunoglobulins. Nature. 1969;223:1247–8.

    Article  PubMed  CAS  Google Scholar 

  37. Chintalacharuvu KR, Raines M, Morrison SL. Divergence of human alpha-chain constant region gene sequences. A novel recombinant alpha 2 gene. J Immunol. 1994;152:5299–304.

    PubMed  CAS  Google Scholar 

  38. Chintalacharuvu KR, Morrison SL. Residues critical for H-L disulfide bond formation in human IgAl and IgA2. J Immunol. 1996;157:3443–9.

    PubMed  CAS  Google Scholar 

  39. Chintalacharuvu KR, Tavill AS, Louis LN, Vaerman JP, Lamm ME, Kaetzel CS. Disulfide bond formation between dimeric immunoglobulin A and the polymeric immunoglobulin receptor during hepatic transcytosis. Hepatology. 1994;19:162–73.

    PubMed  CAS  Google Scholar 

  40. Niles M J, Matsuuchi L, Koshland ME, Brown WR, Klöppel TM. Polymer IgM assembly and secretion in lymphoid and nonlymphoid cell lines: evidence that J chain is required for pentamer IgM synthesis. Proc Natl Acad Sei USA. 1995;92:2884–8.

    Article  CAS  Google Scholar 

  41. Bastian A, Kratzin H, Eckart K, Hilschmann N, Brown WR, Klöppel TM. Intra- and inter-chain disulfide bridges of the human J chain in secretory immunoglobulin A. Biol Chem Hoppe Seyler. 1992;373:1255–63.

    Article  PubMed  CAS  Google Scholar 

  42. Morton HC, Atkin JD, Owens RJ, Woof JM. Purification and characterization of chimeric human IgAl and IgA2 expressed in COS and Chinese hamster ovary cells. J Immunol. 1993;151:4743–52.

    PubMed  CAS  Google Scholar 

  43. Hendrickson BA, Conner DA, Ladd DJ et al. Altered hepatic transport of immunoglobulin A in mice lacking the J chain. J Exp Med. 1995;182:1905–11.

    Article  CAS  Google Scholar 

  44. Tomasi TBJ, Tan EM, Solomon A, Prendergast RA. Characteristics of an immune system common to certain external secretions. J Exp Med. 1965;121:101–24.

    Article  PubMed  CAS  Google Scholar 

  45. Mostov KE. Transepithelial transport of immunoglobulins. Annu Rev Immunol. 1994;12:63–84.

    Article  PubMed  CAS  Google Scholar 

  46. Brandtzaeg P, Kuhn LC, Kraehenbuhl JP. Role of J chain and secretory component in receptor-mediated glandular and hepatic transport of immunoglobulins in man. Scand J Immunol. 1985;22:111–46.

    Article  PubMed  CAS  Google Scholar 

  47. Kuhn LC, Kraehenbuhl JP Role of secretory component, a secreted glycoprotein, in the specific uptake of IgA dimer by epithelial cells. J Biol Chem. 1979;254:11072–81.

    PubMed  CAS  Google Scholar 

  48. Kuhn LC, Kraehenbuhl JP. Interaction of rabbit secretory component with rabbit IgA dimer. J Biol Chem. 1979;254:11066–71.

    PubMed  CAS  Google Scholar 

  49. Chintalacharuvu KR, Morrison SL. Production of secretory immunoglobulin A by a single mammalian cell. Proc Natl Acad Sei USA. 1997;94:6364–8.

    Article  CAS  Google Scholar 

  50. Baenziger J, Kornfeld S. Structure of the carbohydrate units of IgAl immunoglobulin. I. Composition, glycopeptide isolation, and structure of the asparagine-linked oligosaccharide units. J Biol Chem. 1974;249:7260–9.

    PubMed  CAS  Google Scholar 

  51. Baenziger J, Kornfeld S. Structure of the carbohydrate units of IgAl immunoglobulin. II. Structure of the O-glycosidically linked oligosaccharide units. J Biol Chem. 1974;249:7270–81.

    PubMed  CAS  Google Scholar 

  52. Chuang PD, Morrison SL. Elimination of N-linked glycosylation sites from the human IgAl constant region: effects on structure and function. J Immunol. 1997;158:724–32.

    PubMed  CAS  Google Scholar 

  53. Rifai A, Fadden K, Morrison SL, Chintalacharuvu KR. The N-glycans determine the differential blood clearance and hepatic uptake of human immunoglobulin (Ig)Al and IgA2 isotypes. J Exp Med. 2000;191:2171–82.

    Article  PubMed  CAS  Google Scholar 

  54. Brown WR, Klöppel TM. The liver and IgA: immunological, cell biological and clinical implications. Hepatology. 1989;9:763–84.

    Article  PubMed  CAS  Google Scholar 

  55. Mestecky J, McGhee JR, Brown WR, Klöppel TM. Immunoglobulin A (IgA): molecular and cellular interactions involved in IgA biosynthesis and immune response. Adv Immunol. 1987;40:153–245.

    Article  PubMed  CAS  Google Scholar 

  56. Delacroix DL, Malburny GN, Vaerman JP, Brown WR, Klöppel TM. Hepatobiliary transport of plasma IgA in the mouse: contribution to clearance of intravascular IgA. Eur J Immunol. 1985;15:893–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Beenhouwer, D.O., Chintalacharuvu, K.R., Morrison, S.L. (2003). Immunoglobulin synthesis and secretion. In: Touchard, G., Aucouturier, P., Hermine, O., Ronco, P. (eds) Monoclonal Gammopathies and the Kidney. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0191-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0191-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6199-7

  • Online ISBN: 978-94-017-0191-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics