Skip to main content

Microprojectile-Mediated Transformation of Peanut

  • Chapter
Applied Genetics of Leguminosae Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 10B))

  • 236 Accesses

Abstract

Like many legumes peanut has been recalcitrant to genetic transformation. Here I describe some of the parameters that must be considered when establishing a transformation system with reference to legumes in general and peanut in particular. Firstly, I discuss the relative advantages and disadvantages of organogenic and embryogenie tissue culture systems. A procedure for the efficient conversion of peanut somatic embryos into fertile plants is described. Secondly, consideration is given to the important parameters involved in the optimisation of gene transfer using microprojectiles. Finally, I give a detailed description of a protocol to efficiently transform cultivars in both botanical types of peanut (Spanish and Virginia), by particle bombardment into embryogenie callus derived from mature seeds, followed by single-step selection for hygromycin B resistance. This method produces three to six independent non-chimeric transgenic plants per bombardment of 10 cm2 embryogenie callus. Copy number of integrated transgenes ranged from one to twenty with a mean of four and 57% coexpression of hph and luc or uidA genes coprecipitated on separate plasmids. Potted transgenic plant lines can be regenerated within 9 months of callus initiation or 7 months after bombardment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert H (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J., 7: 649–659.

    Article  PubMed  CAS  Google Scholar 

  • Amadeo P, Habu Y, Afsar K, Mittelsten Scheid O and Paszkowski J (2000) Disruption of the plant gene MOM releases transcriptional silencing of methylated genes. Nature, 405: 203–206.

    Article  Google Scholar 

  • Amernick B A (1986) Patent Law for the Nonlawyer: A Guide for the Engineer, Technologist and Manager. New York, Van Nostrand Reinhold. Atreya C D, PapaRao J and Subrahmanyam N C (1984) In vitro regeneration of peanut (Arachis hypogaea L.) plantlets from embryo axes and cotyledon segments. Plant Sci. Lett., 34: 379–383.

    Google Scholar 

  • Bajaj Y P S (1983) Peanut. In: Handbook of Plant Cell Culture (Ed Evans D A), Vol. 3, Macmillan, New York, 193–225.

    Google Scholar 

  • Baker C M, Durham R E, Burns J A, Parrott W A and Wetzstein H Y (1995) High frequency somatic embryo-genesis in peanut (Arachis hypogaea L.) using mature, dry seed. Plant Cell Rep., 15: 38–42.

    Article  CAS  Google Scholar 

  • Baker C M and Wetzstein H Y (1992) Somatic embryogenesis and plant regeneration from leaflets of peanut, Arachis hypogaea. Plant Cell Rep., 11: 71–75.

    CAS  Google Scholar 

  • Barcelo P, Hagel C, Becker D, Martin A and Lörz H (1994) Transgenic cereal (tritordeum) plants obtained at high efficiency by microprojectile bombardment of inflorescence tissue. Plant J., 5: 583–592.

    Article  PubMed  CAS  Google Scholar 

  • Bhojwani S S and Razdan M K (1983) Plant Tissue Culture: Theory and Practice. Elsevier, Amsterdam.

    Google Scholar 

  • Birch R G and Bower R (1994) Principles of gene transfer using particle bombardment. In: Particle Bombardment Technology for Gene Transfer (Eds Yang N S and Christou P), Oxford University Press, New York, 3–37.

    Google Scholar 

  • Bower R and Birch R G (1990) Competence for gene transfer by electroporation of protoplasts from uniform carrot cell suspension cultures. Plant Cell Rep., 9: 386–389.

    Article  CAS  Google Scholar 

  • Bower R, Elliott A R, Potier B A M and Birch R G (1996) High-efficiency, microprojectile-mediated cotrans- formation of sugarcane, using visible or selectable markers. Mol. Breed., 2: 239–249.

    Article  CAS  Google Scholar 

  • Brar G S, Cohen B A, Vick C L and Johnson G W (1994) Recovery of transgenic peanut (Arachis hypogaea L.) plants from elite cultivars utilizing ACCELL technology. Plant J., 5: 745–753.

    Article  Google Scholar 

  • Castillo A M, Vasil V and Vasil I K (1994) Rapid production of fertile transgenic plants of rye (Secale cereale L.). Bio/Technology, 12: 1366–1371.

    Article  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward W W and Prasher D C (1994) Green fluorescent protein as a marker for gene expression. Science, 263: 802–805.

    Article  PubMed  CAS  Google Scholar 

  • Chandler V L and Jorgenson R (2000) Silencing Morpheus awakens transgenes. Nature Bio/Technology, 18: 602–603.

    Article  CAS  Google Scholar 

  • Cheng M, Jarret R L, Li Z and Demski J W (1997) Expression and inheritance of foreign genes in transgenic peanut plants generated by Agrobacterium-mediated transformation. Plant Cell Rep., 16: 541–544.

    Google Scholar 

  • Cheng M, Jarret R L, Li Z, Xing A and Demski J W (1996) Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agro bacterium tumefaciensPlant Cell Rep., 15: 653–657.

    Article  CAS  Google Scholar 

  • Chengalrayan K, Sathaye S and Hazra S (1994) Somatic embryogenesis from mature embryo-derived leaflets of peanut (Arachis hypogaea L.). Plant Cell Rep., 13: 578–581.

    Article  CAS  Google Scholar 

  • Chia T F, Chan Y S and Chua N H (1994) The firefly luciferase gene as a non-invasive reporter for Dendrobium transformation. Plant J., 6: 441–446.

    Article  CAS  Google Scholar 

  • Christianson M L (1987) Causal Events in Morphogenesis. In: Plant Tissue and Cell Culture (Eds Green C E, Somers D A, Hackett W P and Biesboer D D), Alan R. Liss Inc., N.Y., 45–55.

    Google Scholar 

  • Clemente T E, Robertson D, Isgleib T G, Beute M K and Weissinger A K (1992) Evaluation of peanut (Arachis hypogaea L.) from mature zygotic embryos as recipient tissue for biolistic gene transfer. Transgenic Res., 1:275–284.

    Article  CAS  Google Scholar 

  • D’Halluin K (1992) Transgenic maize plants by tissue electroporation. Plant Cell, 4: 1495–1505.

    PubMed  Google Scholar 

  • Durham R E and Parrot W A (1992) Repetitive somatic embryogenesis from peanut cultures in liquid medium. Plant Cell Rep., 11: 122–125.

    Article  Google Scholar 

  • Eapen S and George L (1994) Agrobacterium tumefaciens mediated gene transfer in peanut (Arachis hypogaea L.). Plant Cell Rep., 13: 582–586.

    Article  CAS  Google Scholar 

  • FAO (1996) Quarterly Bulletin of Statistics. Vol. 8 (3/4). FAO, Rome.

    Google Scholar 

  • Finer J J, Vain P, Jones M W and McMullen M D (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep., 11: 323–328.

    Article  CAS  Google Scholar 

  • Franks T and Birch R G (1991a) Gene transfer into intact sugarcane cells using microprojectile bombardment. Australian J. Plant Physiol, 18: 471–480.

    Article  CAS  Google Scholar 

  • Franks T and Birch R G (1991b) Microprojectile techniques for direct gene transfer into intact plant cells. In: Advanced Methods in Plant Breeding and Biotechnology (Ed Murray D A). CAB International, Wallingford, UK.

    Google Scholar 

  • Gordon-Kamm W J, Spencer T M, Mangano M L, Adams T R, Daines R J, Start W G, O’Brien J V, Chambers S A, Adams W R Jr., Willetts N G, Rice T B, Mackey C J, Krueger R W, Kausch A P and Lemaux P G (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell, 2: 603–618.

    PubMed  CAS  Google Scholar 

  • Hansen G and Chilton M D (1996) Agrolistic transformation of plant cells: integration of T-strands generated in planta. Proc. Natl. Acad. Sci. USA, 93: 4978–4983.

    Article  Google Scholar 

  • Hazra S, Sathaye S S and Mascarenhas A F (1989) Direct somatic embryogenesis in peanut (Arachis hypogea). Bio/Technology, 7: 949–951.

    Article  Google Scholar 

  • Hébert D, Kikkert J R, Smith F D and Reisch B I (1993) Optimization of biolistic transformation of embryo-genie grape cell suspensions. Plant Cell Rep., 12: 585–589.

    Article  Google Scholar 

  • Iglesias V A, Gisel A, Bilang R, Leduc N, Potrykus I and Sautter C (1993) Transient expression of visible marker genes in meristem cells of wheat embryos after ballistic micro-targeting. Planta, 192: 84–91.

    Article  Google Scholar 

  • Kausch A P, Adams T R, Mangano M, Zachwieja S J, Gordon-Kamm W, Daines R, Willetts N G, Chambers A A, Adams W Jr., Anderswon A, Williams G and Haines G (1995) Effects of microprojectile bombardment on embryogenie suspension cell cultures of maize (Zea mays L.) used for genetic transformation. Planta, 196: 501–509.

    Article  CAS  Google Scholar 

  • Kiernan J M, Goldberg M J, Young M J, Schoelz J E and Shepard R J (1989) Transformation and regeneration of Nicotiana edwardsonii. Plant Sci., 64: 67–78.

    Article  CAS  Google Scholar 

  • Klee H, Horsch R and Rogers S (1987) Agrobacterium-mediated plant transformation and its further applications to plant biology. Annu. Rev. Plant Physiol, 38: 467–486.

    Article  CAS  Google Scholar 

  • Klein T M, Arentzen R, Lewis P A and Fitzpatrick-McElligott S (1992) Transformation of microbes, plants and animals by particle bombardment. Bio/Technology, 10: 286–291.

    Article  PubMed  CAS  Google Scholar 

  • Klein T M, Fromm M E, Weissinger A, Tomes D, Schaff S, Sletten M and Sanford J C (1988a) Transfer of foreign genes into intact maize cells with high velocity microprojectiles. Proc. Natl Acad. Sci. USA, 85: 4305–4309.

    Article  PubMed  CAS  Google Scholar 

  • Klein T M, Gradziel T, Fromm M E and Sanford J C, (1988b) Factors influencing gene delivery into Zea mays cells by high velocity microprojectiles. Bio/Technology, 6: 559–563.

    Article  CAS  Google Scholar 

  • Klein T M, Harper E C, Svab Z, Sanford J C, Fromm M E and Maliga P (1988c) Stable genetic transformation of intact Nicotiana cells by the particle bombardment process. Proc. Natl Acad. Sci. USA, 85: 8502–8505.

    Article  PubMed  CAS  Google Scholar 

  • Klein T M, Wolf E D, Wu R and Sanford J C (1987) High velocity microprojectiles for delivering nucleic acids into living cells. Nature, 327: 70–73.

    Article  CAS  Google Scholar 

  • Kloti A (1993) Gene transfer by electroporation into intact scutellum cells of wheat embryos. Plant Cell Rep., 12:671–675.

    Article  Google Scholar 

  • Knittel N, Gruber V, Hahne G and Lenee P (1994) Transformation of sunflower (Helianthus annum L.): a reliable protocol. Plant Cell Rep., 14: 81–86.

    CAS  Google Scholar 

  • Kochert G (1996) Molecular markers and genome mapping. In: Current Status of Agricultural Biotechnology in Indonesia (Ed Darussamin A). AARD, Jakarta, 89–108.

    Google Scholar 

  • Kokko H I and Kärenlampi S O (1998) Transformation of arctic bramble (Rubus arcticus L.) by Agrobacterium tumefaciens. Plant Cell Rep., 17: 822–826.

    Article  CAS  Google Scholar 

  • Larkin P J (1990) Direct gene transfer to protoplasts. Australian J. Plant Physiol, 17: 291–302.

    Article  CAS  Google Scholar 

  • Link G K K and Eggars V (1942) Hyperauxing in crown gall of tomato. Botanical Gazette, 103: 87–106.

    Article  Google Scholar 

  • Livingstone D M and Birch R G (1995) Plant regeneration and microprojectile-mediated gene transfer in embryonic leaflets of peanut (Arachis hypogaea L.). Australian J. Plant Physiol, 22: 585–591.

    Article  CAS  Google Scholar 

  • Livingstone D M and Birch R G (1999) Efficient transformation and regeneration of diverse cultivars of peanut (Arachis hypogaea L.) by particle bombardment into embryogenie callus produced from mature seeds. Mol Breed., 5: 43–51.

    Article  Google Scholar 

  • Ludwig S R, Bowen B, Beach L and Wessler S R (1990) A regulatory gene as a novel visible marker for maize transformation. Science, 247: 449–450.

    Article  PubMed  CAS  Google Scholar 

  • Lusardi M C (1994) An approach towards genetically engineered cell fate mapping in maize using the Lc gene as a visible marker: transactivation capacity of Lc vectors in differentiated maize cells and microinjection of Lc vectors into somatic embryos and shoot apical meristems. Plant J., 5: 571–582.

    Article  PubMed  CAS  Google Scholar 

  • McKently A H, Moore G A, Doostar H and Niedz R P (1995) Agrobacterium-mediated transformation of peanut (Arachis hypogaea L.) embryo axes and the development of transgenic plants. Plant Cell Rep., 14: 699–703.

    Article  CAS  Google Scholar 

  • MacKenzie D R, Anderson P M and Wernham (1966) A mobile air blast inoculator for plot experiments with maize dwarf mosaic virus. Plant Disease Rep., 50: 363–367.

    Google Scholar 

  • Mansur E, Lacorte C and Krul W R (1995) Peanut transformation. In: Agrobacterium Protocols: Methods in Molecular Biology (Eds Gartland K M A and Davey M R). Humana Press, Totowa, NJ, 87–100.

    Chapter  Google Scholar 

  • Mlynarova L, Keizer L C P, Stiekema W J and Nap J P (1996) Approaching the lower limits of transgene variability. Plant Cell, 8: 1589–1599.

    PubMed  CAS  Google Scholar 

  • Mroginski L A, Kartha K K and Shyluk J P (1981) Regeneration of peanut (Arachis hypogaea) plantlets by in vitro culture of immature leaves. Can. J. Bot., 59: 826–830.

    Article  CAS  Google Scholar 

  • Nejidat R S, McCormick S M, Delennay X, Dupe P and Layton J (1988) Transgenic tobacco plants expressing a tobacco virus coat protein are resistant to some tobamoviruses. Mol Plant-Microbe Interact., 3: 247–251.

    Article  Google Scholar 

  • Ow D W, Wood K V, DeLuca M, de Wet J R, Helinski D R and Howell S H (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science, 234: 856–859.

    Article  PubMed  CAS  Google Scholar 

  • Ozias-Akins P (1989) Plant regeneration from immature embryos of peanut. Plant Cell Rep., 8: 217–218.

    Article  Google Scholar 

  • Ozias-Akins P, Anderson W F and Holbrook C C (1992) Somatic embryogenesis in Arachis hypogaea L.: genotype comparison. Plant Sci., 83: 103–111.

    Article  Google Scholar 

  • Ozias-Akins P, Schnall J A, Anderson W F, Singsit C, Clemente T E, Adang M J and Weissinger A K (1993) Regeneration of transgenic peanut plants from stably transformed embryogenie callus. Plant Sci., 93: 185–194.

    Article  CAS  Google Scholar 

  • Pugliesi C, Cecconi F, Mandolfo A and Baroncelli S (1990) Plant regeneration and genetic variability from tissue cultures of sunflower (Helianthus annuus L). Plant Breed. Z. Planzenzucht, 106: 114–121.

    Article  Google Scholar 

  • Rasmussen J L (1994) Biolistic transformation of tobacco and maize suspension cells using bacterial cells as microprojectiles. Plant Cell Rep., 13: 212–217.

    CAS  Google Scholar 

  • Reggardio M I, Arana J L, Orsaria L M, Permingeat H R, Spitteler M A and Vallejos R H (1991) Transient transformation of maize tissues by microprojectile bombardment. Plant Sci., 75: 237–243.

    Article  Google Scholar 

  • Russell J A, Roy M K and Sanford J C (1992) Physical trauma and tungsten toxicity reduce the efficiency of biolistic transformation. Plant Physiol, 98: 1050–1056.

    Article  PubMed  CAS  Google Scholar 

  • Sanford J C, Klein T M, Wolf E D and Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. Particulate Science and Technology, 5: 27–37.

    Article  CAS  Google Scholar 

  • Sieburth L E and Meyerowitz E M (1997) Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell, 9: 355–365.

    PubMed  CAS  Google Scholar 

  • Singsit C, Adang M J, Lynch R E, Anderson W F, Wang A, Cardineau G and Ozias-Akins P (1997) Expression of a Bacillus thuringiensis cryIA(c) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer. Transgenic Res., 6: 169–176.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi Y, Dotson M and Keen N T (1992) Plant transformation: a simple particle bombardment device based on flowing helium. Plant Mol Biol, 18: 835–839.

    Article  PubMed  CAS  Google Scholar 

  • Taylor M G and Vasil I K (1991) Histology of, and physical factors affecting, transient GUS expression in pearl millet (Pennisetum glaucum (L.) R. Br.) embryos following microprojectile bombardment. Plant Cell Rep., 10: 120–125.

    Article  CAS  Google Scholar 

  • Teycheney P Y and Dietzgen R G (1994) Cloning and sequence analysis of the coat protein genes of an Australian strain of peanut mottle and an Indonesian ‘blotch’ strain of peanut stripe potyviruses. Virus Research, 31: 235–244.

    Article  PubMed  CAS  Google Scholar 

  • Tisserat B (1985) Embryogenesis, Organogenesis and Plant Regeneration. In: Plant Cell Culture: a practical approach (Ed Dixon RA), IRL Press, Oxford, 79–105.

    Google Scholar 

  • Vain P, McMullen M D and Finer J J (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep., 12: 84–88.

    Article  Google Scholar 

  • Vasil V, Castillo A M, Fromm M E and Vasil I K (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenie callus. Bio/Technology, 10: 667–674.

    Article  CAS  Google Scholar 

  • Wang Y, Klein T M, Fromm M, Cao J, Sanford J C and Wu R (1988) Transient expression of foreign genes in rice, wheat and soybean cells following particle bombardment. Plant Mol Biol, 11: 433–439.

    Article  CAS  Google Scholar 

  • Wang Z Y, Takamizo T, Iglesias V A, Osusky M, Nagel J, Potrykus I and Spangenberg G (1992) Transgenic plants of tall fescue (Festuca arundinacea Schreb.) obtained by direct gene transfer to protoplasts. Bio/Technology, 10: 691–696.

    Article  PubMed  CAS  Google Scholar 

  • Wilmut I, Schnieke A E, McWhir J, Kind A J and Campbell K H S (1997) Viable offspring derived from fetal and adult mammalian cells. Nature, 385: 810–813.

    Article  PubMed  CAS  Google Scholar 

  • Wochok Z S and Weterell D F (1972) Restoration of declining morphogenetic capacity in long-term cultures of Daucus carota by kinetin. Experientia, 28: 104–105.

    Article  CAS  Google Scholar 

  • Ye G N, Daniell H and Sanford J C (1990) Optimization of delivery of foreign DNA into higher-plant chloroplasts. Plant Mol. Biol, 15: 809–819.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Livingstone, D.M. (2003). Microprojectile-Mediated Transformation of Peanut. In: Jaiwal, P.K., Singh, R.P. (eds) Applied Genetics of Leguminosae Biotechnology. Focus on Biotechnology, vol 10B. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0139-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0139-6_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6369-4

  • Online ISBN: 978-94-017-0139-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics