Skip to main content

Formation of Young Kerogen: Protein-Based Melanoidin Hypothesis and Heating Experiments Under Mild Conditions

  • Chapter

Abstract

Kerogen has been attracting interest of many geochemists and geologists and intensively investigated for over 40 years, because kerogen is regarded as important precursor of petroleum and as a carrier of information of evolution of life and of biological environment throughout the earth’s history (e.g. Blumer, 1973; Hunt, 1996; Tissot and Weite, 1984). Kerogen classifications and its thermal alterations leading to liquid and gaseous products have been extensively investigated by a number of authors (e.g. Tissot and Weite, 1984; Hunt, 1996). These investigations enriched greatly the knowledge of chemistry and geochemistry of kerogen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelson P. H. (1963). Organic Geochemistry and the formation of petroleum. 6th World Petroleum Congress, pp. 397–407.

    Google Scholar 

  • Abelson P. H. (1978). Organic matter in the earth’s crust. Ann. Rev. Earth Planet Sci. 6, 325–351.

    Article  CAS  Google Scholar 

  • Abelson P. H. and Hare P. E. (1971). Uptake of amino acids by kerogen. Annual report of the director of the geophysical laboratory, Carnegie Institution of Washington Year Book 62, 297–303.

    Google Scholar 

  • Blumer M. (1973). Chemical fossils: trends in organic geochemistry. Pure Appl. Chem. 34, 591–609.

    Article  CAS  Google Scholar 

  • Bordovskiy O. K. (1965). Accumulation and transformation of organic substances in marine sediments. Marine Geol. 3, 3–114.

    Article  Google Scholar 

  • de Leeuw J. W. and Largeau C. (1993). A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation. In: M. H. Engel and S. A. Macko (eds), Organic Geochemistry. Plenum Publishing Group, pp. 23–72.

    Chapter  Google Scholar 

  • Durand B. (1980). Sedimentary organic matter and kerogen. Definition and quantitative importance of kerogen. In: B. Durand (ed.), Kerogen. Editions Technip, pp. 13–34.

    Google Scholar 

  • Eriksson C. (ed.). (1981). Progress in Food and Nutrition Science. Pergamon Press, Oxford, 501 pp.

    Google Scholar 

  • Evershed R. P., Bland H. A., Bergen P. F. v., Carter J. F., Horton M. C. and Rowley-Conwy P. A. (1997). Volatile compounds in archaeological plant remains and the Maillard reaction during decay of organic matter. Science 278, 432–433.

    Article  CAS  Google Scholar 

  • Fujimaki M., Namiki M. and Kato H. (eds). (1986). Amino-carbonyl Reactions in Food and Biological Systems. Elsevier, Kodansha Ltd., Amsterdam, 583 pp.

    Google Scholar 

  • Handa N. (1972). Organogeochemical studies of a 200 meters core sample from Lake Biwa. The determination of carbohydrate and organic carbon. Proc. Japan Acad. 48, 510–515.

    CAS  Google Scholar 

  • Handa N. (1973). Organogeochemical studies of a 200-meter core sample from Lake Biwa II. The determination of protein and lipid. Proc. Japan Acad. 49, 265–270.

    CAS  Google Scholar 

  • Hedges J. I. (1978). The formation and clay mineral reaction of melanoidins. Geochim. Cosmochim. Acta 42, 69–76.

    Article  CAS  Google Scholar 

  • Hedges J. I. (1988). Polymerization of Humic Substances in Natural Environments. In: F. H. Frimmel and R. F. Christman (eds), Humic Substances and Their Role in the Environment. John Wiley, pp. 45–58.

    Google Scholar 

  • Hedges J. I., Eglinton G, Hatcher P. G, Kirchman D. L., Arnosti C., Derenne S., Evershed R. P., Kogel-Knabner I., de Leeuw J. W., Littke R., Michaelis W. and Rullkotter J. (2000). The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org. Geochem. 31, 945–958.

    Article  CAS  Google Scholar 

  • Hoering T. C. (1973). A comparison of melanoidin and humic acid. Annual Report of the Director of the Geophysical Laboratory, Carnegie Institution of Washington Year Book 72, 682–690.

    Google Scholar 

  • Horsfield B. (1997). The bulk composition of first-formed petroleum in source rocks. In: D. Weite, B. Horsfield and D. R. Baker (eds), Petroleum and Basin Evolution. Springer, pp. 337–402.

    Google Scholar 

  • Hunt J. M. (1996) Petroleum Geochemistry and Geology, 2nd Edition. W. H. Freeman and Company.

    Google Scholar 

  • Ishiwatari R. (1975). Transformation of sedimentary humic acid, facts and speculations. In: D. Povoledo and H. L. Golterman (eds), Humic Substances. Pudoc, Wageningen, pp. 109–121.

    Google Scholar 

  • Ishiwatari R. (1985). Geochemistry of humic substances in lake sediments. In: G R. Aiken, D. M. McKnight, R. L. Wershaw and P. MacCarthy (eds), Humic Substances in Soil, Sediment, and Water. John Wiley & Sons, pp. 147–180.

    Google Scholar 

  • Ishiwatari R. and Kawamura K. (1981). Abundance of humic compounds in the 200-meter sediment core sample from Lake Biwa. In: S. Horie (ed.), Paleolimnology of Lake Biwa and the Japanese Pleistocene, Vol. 9. Kyoto University, pp. 103–111.

    Google Scholar 

  • Ishiwatari R. and Machihara T. (1982). Algal lipids as a possible contributor to the polymethylene chains in kerogen. Geochim. Cosmochim. Acta. 46, 1459–1464.

    Article  CAS  Google Scholar 

  • Ishiwatari R. and Machihara T. (1983). Early stage incorporation of biolipids into kerogen in a lacustrine sediment: evidence from alkaline potassium permanganate oxidation of sedimentary lipids and humic matter. Org. Geochem. 4, 179–184.

    Article  CAS  Google Scholar 

  • Ishiwatari R., Ishiwatari M., Rohrback G B. and Kaplan I. R. (1977). Thermal alteration experiments on organic matter from recent marine sediments in relation to petroleum genesis. Geochim. Cosmochim. Acta. 41, 815–828.

    Article  CAS  Google Scholar 

  • Ishiwatari R., Rohrback B. G and Kaplan I. R. (1978). Hydrocarbon generation by thermal alteration of kerogen from difference sediments. Amer. Assoc. Petrol. Geol. Bull. 62, 687–692.

    CAS  Google Scholar 

  • Ishiwatari R., Morinaga S., Yamamoto S., Machihara T., Rubinsztain Y., Ioselis P., Aizenshtat Z. and Ikan R. (1986). A study of formation mechanism of sedimentary humic substances. I. Characterization of synthetic humic substances (melanoidins) by alkaline potassium permanganate oxidation. Org. Geochem. 9, 11–23.

    Article  CAS  Google Scholar 

  • Ishiwatari R., Morinaga S., Yamamoto S. and Machihara T. (1991). Characteristics of kerogens from Recent marine and lacustrine sediments: GC/MS analysis of alkaline permanganate oxidation products. J. Southeast Asian Earth Sci. 5, 53–60.

    Article  Google Scholar 

  • Kemp A. L. W. and Johnston L. M. (1979). Diagenesis of organic matter in the sediments of Lakes Ontario, Erie, and Huron. J. Great Lakes Res. 5, 1–10.

    Article  CAS  Google Scholar 

  • Knicker H. and Hatcher P. G. (1997). Survival of protein in an organic-rich sediment. Possible protection by encapsulation in organic matter. Naturwissenschaftern 84, 231–234.

    Article  CAS  Google Scholar 

  • Larter S. R. and Douglas A. G. (1980). Melanoidins-kerogen precursors and geochemical lipid sinks: a study using pyrolysis gas chromatography (PGC). Geochim. Cosmochim. Acta 44, 2087–2095.

    Article  CAS  Google Scholar 

  • Mauron J. (1981). The Maillard reaction in food; a critical review from the nutritional standpoint. Prog. Fd. Nutr. Sci. 5, 5–35.

    CAS  Google Scholar 

  • Mongenot T., Riboulleau A., Garcette-Lepecq A., Derenne S., Pouet Y., Baudin F. and Largeau C. (2001). Occurrence of proteinaceous moieties in S- and O-rich Late Tithonian kerogen (Kashpir oil shales, Russia). Org. Geochem. 32, 199–203.

    Article  CAS  Google Scholar 

  • Morinaga S. and Ishiwatari R. (1998). Contribution of carbohydrate and amino acids to the formation of aromatic structure of synthetic melanoidin (model sedimentary humic substance): a study using relabeled glucose. Chikyukagaku (Geochemistry) 32, 97–104 (in Japanese).

    CAS  Google Scholar 

  • Morinaga S., Ishiwatari R. and Machihara T. (1996). Chemical characterization of insoluble macromol-ecules (kerogen) from marine and lacustrine sediments. Molecular distribution of aliphatic dicarboxylic acids in alkaline KM04 oxidation products. Chikyukagaku (Geochemistry) 30, 35–45 (in Japanese).

    CAS  Google Scholar 

  • Nguyen R. T. and Harvey H. R. (2001). Preservation of protein in marine systems: hydrophobic and other noncovalent associations as major stabilizing forces. Geochim. Cosmochim. Acta 65, 1467–1480.

    Article  CAS  Google Scholar 

  • Nip M., Tegelaar E. W., de Leeuw J. W. and Schenk P. A. (1986). A new non-saponifiable highly aliphatic and resistant biopolymer in plant cuticles. Evidence from pyrolysis and 13C -NMR analysis of present-day and fossil plants. Naturwissenschaften 73, 579–585.

    Article  CAS  Google Scholar 

  • Nissenbaum A. and Kaplan I. R. (1972). Chemical and isotopic evidence for the in situ origin of marine humic substances. Limnol. Oceanogr. 17, 570–582.

    Article  CAS  Google Scholar 

  • O’Brien J., Nursten H. E., Crabbe J. C. and Ames J. M. (eds). (1998). The Maillard Reaction in Foods and Medicine. Royal Society of Chemistry, Cambridge, 464 pp.

    Google Scholar 

  • Peters K. E., Rohrback B. G. and Kaplan I. R. (1981). Carbon and hydrogen stable isotope variations in kerogen during laboratory-simulated thermal maturation. AAPG Bull. 65, 501–508.

    CAS  Google Scholar 

  • Philp R. P. and Calvin M. (1976). Possible origin for insoluble organic (kerogen) debris in sediments from insoluble cell-wall materials of algae and bacteria. Nature 262, 134–136.

    Article  CAS  Google Scholar 

  • Poinar H. N., Hofreiter M., Spaulding W. G, Martin P. S., Strankiewicz B. A., Bland H., Evershed R. P., Possnert G. and Pääbo S. (1998). Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281, 402–406.

    Article  CAS  Google Scholar 

  • Pokorny J. (1981). Browning from lipid-protein interactions. Prog. Fd. Nutr. Sci. 5, 421–428.

    Google Scholar 

  • Riboulleau A., Mongenot T., Baudin F., Derenne S. and Largeau C. (2002). Factors controlling the survival of proteinaceous material in Late Tithonian kerogens (Kashpir oil shales, Russia). Org. Geochem. 33, 1127–1130.

    Article  CAS  Google Scholar 

  • Romankevich E. A. (1976). Organic matter of bottom sediments east off Japan and its influence on the oxidation-reduction processes. In: I.I. Volkov (ed.), The Bio geochemistry of the Diagenesis of Oceanic Sediments (in Russian). Nauka, pp. 5–19.

    Google Scholar 

  • Shioya M. and Ishiwatari R. (1983). Laboratory thermal conversion of sedimentary lipids to kerogen-like matter. Org. Geochem. 5, 7–12.

    Article  CAS  Google Scholar 

  • Standen G, Boucher R. J., Eglinton G, Hansen G, Eglinton T. I. and Larter S. R. (1992). Differentiation of German Tertiary brown coal lithotypes (“amorphous” and “woody” kerogens) using ruthenium tetroxide oxidation and pyrolysis-g.c.-m.s. Fuel 71, 31–36.

    Article  CAS  Google Scholar 

  • Standen G, Boucher R. J., Rafalska-Bloch J. and Eglinton G (1991). Ruthenium tetroxide oxidation of natural organic macromolecules: messel kerogen. Chem. Geol. 91, 297–313.

    Article  CAS  Google Scholar 

  • Suyama K. (1981). Amino-carbonyl reaction in fatty aldehyde-primary amine system. Nippon Nogeikagaku Kaishi 55, 1131–1138 (in Japanese).

    Article  CAS  Google Scholar 

  • Tegelaar E. W., de Leeuw J. W., Derenne S. and Largeau C. (1989). A reappraisal of kerogen formation. Geochim. Cosmochim. Acta 53, 3103–3106.

    Article  CAS  Google Scholar 

  • Tissot B. and Weite D. (1984). Petroleum Formation and Occurrence. Springer-Verlag, Berlin/Heidelberg/ New York/Tokyo, 699 pp.

    Google Scholar 

  • van de Meent D., Brown S. C., Philp R. P. and Simoneit B. R. T. (1980). Pyrolysis-high resolution gas chromatography and pyrolysis gas chromatography-mass spectrometry of kerogens and kerogen precursors. Geochim. Cosmochim. Acta 44, 999–1013.

    Article  Google Scholar 

  • Vandenbroucke M., Pelet R. and Debyser Y. (1985). Geochemistry of humic substances in marine sediments (Chapter 10). In: G. R. Aiken, D. M. McKnight, R. L. Wershaw and P. MacCarthy (eds), Humic Substances in Soil, Sediment and Water. Wiley-Interscience, pp. 249–273.

    Google Scholar 

  • Yamamoto S. and Ishiwatari R. (1989). A study of the formation mechanism of sedimentary humic substances. II. Protein-based melanoidin model. Org. Geochem. 14, 479–489.

    Article  CAS  Google Scholar 

  • Yamamoto S. and Ishiwatari R. (1992). A study of the formation mechanism of sedimentary humic substances. III. Evidence for the protein-based melanoidin model. Sci. Total Environ. 117/118, 279–292.

    Article  Google Scholar 

  • Yamamoto S., Ishiwatari R. and Philip R. P. (1986). Pyrolysis gas chromatography-mass spectrometry of insoluble organic matter (kerogen) from a Recent lacustrine sediment. Chikyukagaku (Geochemistry) 20, 39–50 (in Japanese).

    CAS  Google Scholar 

  • Zang X., Nguyen R. T., Harvey H. R., Knicker H. and Hatcher P. G. (2001). Preservation of proteinaceous material during the degradation of the green alga Botryococcus braunii: a solid-state 2D 15N13C NMR spectroscopy study. Geochim. Cosmochim. Acta 65, 3299–3305.

    Article  CAS  Google Scholar 

  • Zang X., van Heemst J. D. H., Dria K. J. and Hatcher P. G (2000). Encapsulation of protein in humic acid from a histosol as an explanation for the occurrence of organic nitrogen in soil and sediment. Org. Geochem. 31, 679–695.

    Article  CAS  Google Scholar 

  • Zegouagh Y, Derenne S., Largeau C., Bertrand P., Sicre M.-A., Saliot A. and Rousseau B. (1999). Refractory organic matter in sediments from the North-West African upwelling system: abundance, chemical structure and origin. Org. Geochem. 30, 101–117.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ishiwatari, R., Yamamoto, S. (2003). Formation of Young Kerogen: Protein-Based Melanoidin Hypothesis and Heating Experiments Under Mild Conditions. In: Ikan, R. (eds) Natural and Laboratory-Simulated Thermal Geochemical Processes. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0111-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0111-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6306-9

  • Online ISBN: 978-94-017-0111-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics