Skip to main content

Genetic Engineering for Enhancing Abiotic Stress Tolerance

  • Chapter
Improvement Strategies of Leguminosae Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 10A))

Abstract

A major factor, which reduces the potential yield of legume crops very significantly, is their sensitivity to abiotic stresses, e.g. drought, flooding, heavy metals, high and low temperature, salinity, alkalinity and acidity of the soil, ozone and UV-irradiations, etc. Stress signals are perceived by the plants and their transduction within the cellular compartments can modulate the gene expression leading to the synthesis and build up of the strategic biomolecules which help the plants to develop stress tolerance. The signal perception involves membrane receptors. The perceived signal is further transduced into the cells by a change in the levels of intracellular signaling molecules known as secondary messengers. Certain protein-modifiers, scaffolds and adapters, etc. are also known to be involved in regulating the abiotic stress signals in plants as the signaling partners, which provide physical supports for the certain signaling events. Many stress responsive genes, promoters and transcription factors have been identified in the plants including the legumes. The transcription factors modulate the expression of a cascade of stress inducible genes to impart tolerance to the stressed plants. Several stress related proteins have been characterized in plants, which are involved in conferring the stress tolerance by various ways. Compatible solutes provide osmoprotection and scavenge free radicals generated during the stress. Anti-oxidative defense system is also induced during the various abiotic stresses, which provide a quick and efficient removal of toxic free radicals, e.g. reactive oxygen species (ROI). Recent studies indicate that the manipulation of specific key regulatory steps, singly or in combinations or by a cascade of genes using transcription factors through genetic engineering, can confer the stress tolerance in transgenic plants. Most of the studies, however, are related to model plants like Arabidopsis and Nicotiana which have many differences with legumes. Direct studies with legumes or a leguminous model plant like Lotus japonicus or Medicago truncatula can provide better insight to understand the complex interactions of abiotic stress signaling and tolerance mechanisms and strategic target points can be characterized to achieve stable stress tolerance to the abiotic stresses in legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alia A, Pardha Saradhi P and Mohanty P (1991) Proline enhances primary photochemical activities in isolated thylakoid membranes of Brassica juncea by arresting photoinhibitory damage. Biochem. Biophvs. Res. Commun., 181: 1238–1244.

    CAS  Google Scholar 

  • Alia A, Pardha Saradhi P and Mohanty P (1992) Enhancement of photosystem-Il photoreaction and high pH stability in thylakoid from cotyledonary leaves of Brassica juncea raised under sodium chloride stress. Physiol. Plant., 86: 189–196.

    CAS  Google Scholar 

  • Alia A, Pardha Saradhi P and Mohanty P (1993) Proline in relation to free radical production in seedlings of Brassica juncea raised under sodium chloride stress. Plant Soil, 156: 497–500.

    Google Scholar 

  • Alia A, Pardha Saradhi P and Mohanty P (1997) Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage. J. Photochem. Photobiol., 38: 253–257.

    CAS  Google Scholar 

  • Allen R D (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol., 107: 1049–1054.

    PubMed  CAS  Google Scholar 

  • Allen R D, Sen Gupta A, Webb R P and Holaday A S (1994) Protection of plants from oxidative stress using sod transgenes: Interactions with endogenous enzymes. In: Frontiers of Reactive Oxygen Species in Biology and Medicine (Eds Asada K and Yoshikawa A ), Excerpta Medica, Amsterdam, pp. 321–322.

    Google Scholar 

  • Aono M, Kubo A, Saji H, Natori T, Tanaka K and Kondo N (1991) Resistance to active oxygen toxicity of trans-genic Nicotiana tabaccum that express the gene for glutathione reductase from Escherichia coli. Plant Cell Physiol., 32: 691–697.

    CAS  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase, a hydrogen peroxide scavenging enzyme in plants. Physiol. Plant, 85: 235–241.

    CAS  Google Scholar 

  • Baburina O K and Sheryakora N I (1988) Salt tolerance and contents of quarternary ammonium compounds in wild spp. of Medicago. Fiziol Rastenii, 34: 887–893.

    Google Scholar 

  • Bohnert H J and Jensen R G (1996) Strategies for engineering water stress tolerance in plants. TIBTECH, 14: 89–87.

    CAS  Google Scholar 

  • Bohnert H J, Nelson D E and Jensen R G (1995) Adaptations to environmental stresses. Plant Cell, 7: 1099–1111.

    PubMed  CAS  Google Scholar 

  • Botella J R, Arteca J M, Somodevilla M and Arteca R N (1996) Calcium-dependent protein kinases gene expression in response to physical and chemical stimuli in mungbean (Vigna radiata). Plant Mol. Biol., 30: 1129–1137.

    Google Scholar 

  • Bowler C, Slooten L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C, Van Montague M and Inze D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in trans-genic plants. EMBO J., 10: 1723–1732.

    PubMed  CAS  Google Scholar 

  • Burkey O K, Wei C, Easan G, Ghosh P and Fenner G (2000) Antioxidant metabolite levels in ozone sensitive and tolerant genotypes of snap bean. Physiol. Plant., 110: 195–200.

    CAS  Google Scholar 

  • Chai T Y, ZhangY X and Burkard G (1998) Heavy metal responsive genes in kidney bean: cloning of cDNA and gene expression analysis. Acta Phytophysiol. Sinica, 24: 399–404.

    CAS  Google Scholar 

  • Cho Y, Lightfoot D A and Weed A J (1999) Trigonelline concentrations in salt stressed leaves of cultivated Glycine max. Phytochemistry, 52: 1235–1238.

    CAS  Google Scholar 

  • Cho M H and Spalding E P (1996) An anion channel in Arabidopsis hypocotyls activated by blue light. Proc. Natl. Sci. Acad. USA, 93: 8134–8138.

    CAS  Google Scholar 

  • Choudhary A and Singh R P (2000) Cadmium induced changes in diamine oxidase activity and polyamines levels in Vigna radiata L. Wilczek seedlings. J. Plant Physiol., 156: 704–710.

    CAS  Google Scholar 

  • Clark G B, Thompson Jr G and Roux S J (2001) Signal transduction mechanism in plants; An overview. Curr. Sci., 80: 170–177.

    PubMed  CAS  Google Scholar 

  • Colmenero-Flores J M, Moreno L P, Smith C E and Covarrubias A A (1999) Pvlea-18, a member of a new late embryogenesis abundant protein family that accumulates during water stress and in the growing region of well irrigated bean seedlings. Plant Physiol., 120: 93–103.

    PubMed  CAS  Google Scholar 

  • Covarrubias A A, Ayala J W, Reyes J L, Hernandez M and Garciarrubio A (1995) Cell wall proteins induced by water deficit in bean (Phaseolus vulgaris) seedlings. Plant Physiol., 107: 1119–1128.

    PubMed  CAS  Google Scholar 

  • Creissen G P, Edwards A and Mullineaux P M (1994) Glutathione reductase and ascorbate peroxidase. In: Causes of Photooxidative Stress and Amelioration of Defence Systems in Plants (Eds Foyer C H and Mullineaux P M ), CRC Press, Boca Raton, FL, pp. 343–364.

    Google Scholar 

  • Crowell D N and Amasino R M (1991) Nucleotide sequence of an iron superoxide dismutase cDNA from soybean. Plant Physiol., 96: 1393–1394.

    PubMed  CAS  Google Scholar 

  • Cuypers A, Vangronsveld J and Clijsters H (2000). Biospheric effect of copper on the ascorbate-glutathione pathway in primary leaves of Phaseolus vulgaris seedlings during the early stages of metal assimilation. Physiol. Plant, 110: 512–517.

    CAS  Google Scholar 

  • Dave R S and Mitra R K (1998) A low temperature induced apoplastic protein isolated from Arachis hypogaea. Phytochemistry, 49: 2207–2213.

    CAS  Google Scholar 

  • Delauney A, Hu C, Kavikishore P B and Verma D P S (1993) Cloning of ornithin-d-aminotransferase cDNA by trans complementation in E. coli and regulation of proline biosynthesis. J. Biol. Chem., 268: 18673–18678.

    PubMed  CAS  Google Scholar 

  • DeWald D B, Torabinejad J, Jones C A, Shope J C, Cangelosi A R, Thompson J E, Prestwich G D and Hama H (2001) Rapid accumulation of phoshatidylinositol 4,5-biphosphate and inositol 1,4,5-triphosphate correlates with calcium mobilization in salt stressed Arabidopsis. Plant Physiol., 126: 759–769.

    CAS  Google Scholar 

  • Dubey R S (1997) Nitrogen metabolism in plants under salt stress. In: Stategies fhr Improving Salt Tolerance in Higher Plants (Eds Jaiwal P K, Singh R P and Gulati A ), Science Publishers, Enfield, USA/Oxford and IBH Pub. Co. Pvt Ltd., Delhi, India, pp. 129–138.

    Google Scholar 

  • Edwards A, Rawsthorne S and Mullineaux P M (1990) Subcellular distribution of multiple isoforms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta, 180: 278–284.

    CAS  Google Scholar 

  • Ellard-Ivery M, Hopkins R B, White T J and Lomax T L (1999) Cloning, expression and N-terminal nuristoylation of CPCK I, a calcium dependent protein kinase from Zucchini (Cucurbita pepo L.). Plant Mol. Biol., 39: 208.

    Google Scholar 

  • Ford C W (1982) Accumulation of 0-methyl ionositols in water stressed Vigna spp. Phytochemistry, 21: 1149–1151.

    CAS  Google Scholar 

  • Ford C W (1984) Accumulation of low molecular weight solutes in water stressed tropical legumes. Phytochemistry, 23: 1007–1015.

    CAS  Google Scholar 

  • Foyer C H, Descourvieres P and Kunert K J (1994) Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Environ., 17: 507–523.

    CAS  Google Scholar 

  • Galvis M L E, Marttila S, Hakansson G, Forsberg J and Knorpp C (2001) Heat stress responses in pea involves interaction of mitochondrial nucleoside di phosphate kinase with a novel 86-kilodalton protein. Plant Physiol., 126: 69–77.

    CAS  Google Scholar 

  • Gilmour S J, Seboly A M, Salazar M P, Everard J D and Thomashow M F (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimatization. Plant Physiol., 124: 1854–1865.

    PubMed  CAS  Google Scholar 

  • Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M and Thomashow M F (1998) Low temperature regulation of the Arabidopsis CBF family of AP2. Plant J., 16: 433–442.

    PubMed  CAS  Google Scholar 

  • Gonzalez A, Steffen K L and Lynch J P (1998). Light and excess manganese: Implications for oxidative stress in common bean. Plant Physiol., 118: 493–503.

    PubMed  CAS  Google Scholar 

  • Grover A, Kapoor A, Satya Lakshmi O, Agarwal S, Sahi C, Katiyar-Agarwal S, Agarwal M and Dubey H (2001) Understanding molecular alphabets of the plant abiotic stress responses. Cure. Sci., 80: 206–216.

    CAS  Google Scholar 

  • Grover A, Pareek A, Singla S L, Minhas D, Katiyar S, Ghawana S, Dubey H, Agarwal M, Rao G U, Rathee J and Gover A (1998) Engineering crops for tolerance against abiotic stresses through gene manipulation. Cure Sci., 75: 689–696.

    Google Scholar 

  • Gulati A and Jaiwal P K (1997) The potential of plant tissue culture and related techniques for the improvement of salt tolerance in higher plants. In: Strategies Ihr Improving Salt Tolerance in Higher Plants (Eds Jaiwal P K, Singh R P and Gulati A ), Science Publishers Inc. Enfield, USA/Oxford and IBH Pub. Co. Pvt. Ltd, New Delhi, India.

    Google Scholar 

  • Guy C L (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol., 41: 187–223.

    CAS  Google Scholar 

  • Hamilton III E W and Heckathorn S A (2001) Mitochondrial adaptation to NaC1 complexl is protected by antioxidants and small heat shock proteins, whereas complexl? is protected by proline and betaine. Plant Physiol., 126: 1266–1274.

    PubMed  CAS  Google Scholar 

  • Hayashi F, [chino T, Osanai M and Wada K (2000). Oscillation and regulation of proline content by P5CS and ProDH gene expressions in the light/dark cycles in Arabidopsis thaliana L. Plant Cell Physiol., 41: 1096–1101.

    CAS  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z and Verma D P S (2000) Removal of feedback inhibition of pyrroline-5carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol., 122: 1129–1136.

    PubMed  CAS  Google Scholar 

  • Huang C H, Tate B F, Crain R C and Cote C G (1995) Multiple phosphoinositol specific phospholipase in oat roots: characterization and partial purification. Plant J, 8: 257–267.

    CAS  Google Scholar 

  • Huang J, Hiriji R, Adam L, Rozwadowski L K, Hammerlindl K J, Keller A W, Selveraj G (2000) Genetic engineering of glycine betaine production towards enhancing stress tolerance in plants: metabolic limitation. Plant Physiol., 122: 747–756.

    PubMed  CAS  Google Scholar 

  • luchi S, Kobayashi M, Yamaguchi-Shinozaki K and Shinozaki K (2000). A stress inducible gene for 9-cis epoxycaratenoid dioxygenase invoved in abscisic acid biosynthesis under water stress in drought tolerant cowpea. Plant Physiol., 123: 553–562.

    Google Scholar 

  • Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Schabenberger O and Thomashow M F (1998) Arabidopsis CBF 1 overexpression induces cor genes and enhances freezing tolerance. Science, 280: 104–106.

    PubMed  CAS  Google Scholar 

  • Jimenez A, Hernandez J A, Pustori G, del Rio L A and Sevilla F (1998) Role of ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol., 118: 1327–1335.

    PubMed  CAS  Google Scholar 

  • Jung K M and Kim D K (2000) Purification and characterization of a membrane-associated 48-kilodalton phospholipase A2 in leaves of broad bean. Plant Phsiol., 123: 1057–1067.

    CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguci-Shinozaki K and Shinozaki K (1999) Improving plant drought, salt and freezing tolerance by gene transfer of a signal stress-inducible transcription factor. Nature Biotech., 17: 287–291.

    CAS  Google Scholar 

  • Kato-Naguchi H (1999). Abscisic acid increase anaerobic tolerance in alfalfa seedlings. Physiol. Plant., 107: 395–398.

    Google Scholar 

  • Kavikishor P B, Hong Z, Guo-Hua M, Hu Chein A N A and Verma D P S (1995) Overproduction of DI pyrroline5-carboxylate synthetase increase proline production and confer osmotolerance in transgenic plants. Plant Physiol., 108: 1387–1394.

    Google Scholar 

  • Keeler S J, Boettger C M, Haynes J G, Kuches K A, Johnson M M, Thureen D L, Keeler C L and Kitto S L (2000) Acquired thermotolerance and expression of the HSP100/ CIpB genes of Limebean. Plant Physiol., 123: 1121–1132.

    PubMed  CAS  Google Scholar 

  • Keller F and Ludlow M W (1993) Carbohydrates metabolism in drought-stressed leaves of pigeonpeas (Cajanus cajan). J. Exp. Bot., 44: 1351–1359.

    CAS  Google Scholar 

  • Knight H, Brandt S and Knight M R (1998) A history of stress alters drought calcium signaling pathways in Arabidopsis. Plant J, 16: 681–687.

    CAS  Google Scholar 

  • Knight H and Knight M R (2001) Abiotic stress signaling pathways: specificity and cross talk. Trends Plant Sci., 6: 262–267.

    PubMed  CAS  Google Scholar 

  • Knight H, Trewas A J and Knight M R (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell, 8: 489–503.

    Google Scholar 

  • Knight H, Trewas A J and Knight M R (1997) Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant J, 12: 1067–1078.

    PubMed  CAS  Google Scholar 

  • Knight H, Veale E L, Warren G J and Knight M R (1999) The mutation in Arabidopsis suppresses low temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell, 11: 875–886.

    PubMed  CAS  Google Scholar 

  • Knight M R, Campbell A K, Smith S M and Trewas A J (1991) Transgenic plant aequorin reports the effect of touch and cold shock and elicitors and cytoplasmic calcium. Nature, 352: 524–526.

    Google Scholar 

  • Knorzer O C, Lederer B, Durner J and Boger P (1999) Antioxidative defense activation in soybean cells. Physiol. Plant., 107: 294–302.

    Google Scholar 

  • Kubo A, Saji H, Tanaka K and Kondo N (1992) Cloning and sequencing of a eDNA encoding ascorbate peroxidase from Arabidopsis thaliana. Plant Mol. Biol., 18: 691–701.

    CAS  Google Scholar 

  • Lee J H, Habel A and Schoffl F (1995) Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J, 8: 603–612.

    CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguch-Shinozaki K and Shinozaki K (1998). Two transcription factors, DREB I and DREB 2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low temparature responsive gene expression, respectively in Arabidopsis. Plant Cell, 10: 1391–1406.

    CAS  Google Scholar 

  • McAinsh M R and Hetherington A M (1998) Encoding specificity in Cat+ signaling systems. Trends Plant Sci., 3: 32–36.

    Google Scholar 

  • Mckersie B D, Bowley S R and Jones K S (1999) Winter survival of transgenic alfalfa over expressing superoxide dismutase. Plant Physiol., 119: 839–847.

    PubMed  CAS  Google Scholar 

  • Mckersie B D, Bowley S R, Harjanto E and Leprince O (1996) Water deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol., 111: 1177–1181.

    PubMed  CAS  Google Scholar 

  • Mckersie B D, Chen Y, De Beus M, Bowley S R and Bowler C (1993) Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.) Plant Physiol., 103: 1155–1163.

    PubMed  CAS  Google Scholar 

  • McNeil S D, Rhodes D, Russell B L, Nuccio M L, Shachar-Hill Y and Hanson A D (2000) Metabolic modeling identifies key constraints on an engineered glycine betaine synthesis pathway in tobacco. Plant Physiol., 124: 153–162.

    PubMed  CAS  Google Scholar 

  • Mittler R and Zilinskas B A (1991) Molecular cloning and nucleotide sequence analysis of a cDNA encoding pea cytosolic ascorbate peroxidase. FEBS Lett., 289: 257–259.

    PubMed  CAS  Google Scholar 

  • Miyake C, Cao W H and Asada K (1993) Purification and molecular properties of the thylakoid bound ascorbate peroxidase in spinach chloroplasts. Plant Cell Physiol., 34: 881–889.

    CAS  Google Scholar 

  • Monks D E, Aghoram K, Courtney P D, DeWald D B and Dewey R E (2001) Hyperosmotic stress induces the rapid phosphorylation of through activation of the protein kinases SPK1 and SPK2. Plant Cell, 13: 1205–1219.

    Google Scholar 

  • Monroy A F, Sahan F and Dhindsa R S (1993) Cold induced changes in freezing tolerance protein phosphorylation and gene expression. Evidence for a role of calcium. Plant Physiol., 102: 1227–1235.

    PubMed  CAS  Google Scholar 

  • Monroy A F, Sangwan V and Dhindsa R S (1998) Low temperature signal transduction during cold acclimitization: Protein phosphatase 2A as an early target for cold inactivation. Plant J, 13: 653–660.

    CAS  Google Scholar 

  • Montero E, Cabot C, Barcela J and Poscheri R C (1997) Endogenous abscisic acid levels are linked to decreased growth of bushbean plants treated with NaCI. Physiol. Plant, 101: 1722–1730.

    Google Scholar 

  • Muratta N and Los D A (1997) Membrane fluidity and temperature perception. Plant Physiol., 115: 875–879.

    Google Scholar 

  • Park J M, Park C J, Lee S B, Ham B K, Shin R and Paek K H (2001) Overexpression of the tobacco Tsil gene encoding an EREBP/AP2 type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell, 13: 1035–1046.

    PubMed  CAS  Google Scholar 

  • Pitcher L H, Repetti P and Zilinskas B A (1994) Overproduction of ascorbate protects transgenic tobacco plants against oxidative stress. Plant Physiol., 105: S-169.

    Google Scholar 

  • Prandl R, Hinderhofer K and Eggers-Schoffl F (1998) HSF3, a new heat shock factor from Arabidopsis thaliana derepresses the heat shock response and confers thermotolerance when over expressed in transgenic plants. Mol. Gen. Genet., 258: 269–278.

    PubMed  CAS  Google Scholar 

  • Queitsch C, Hong S H, Vierling E and Lindquist S (2000) Heatshock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell, 12: 479–492.

    CAS  Google Scholar 

  • Rajam M V (1997) Polyamines in plant ecophysiology. In: Plant Ecophysiology (Ed Prasad M N V ). John Wiley, New York, USA, pp. 343–374.

    Google Scholar 

  • Rajam M V, Dagar S, Waie B, Yadav J S, Kumar P A, Shoeb F and Kumaria R (1998) Genetic engineering of polyamine and carbohydrate metabolism for osmotic stress tolerance higher plant..1 Biosci., 23: 473–482.

    CAS  Google Scholar 

  • Rao M V and Ormrod D P (1995) Antioxidative enzymes, the missing links between physiological, biochemical and molecular response. Phvsiol. Mol. Biol. Plants, 1: 99–100.

    Google Scholar 

  • Raymond P, Weber H, Damond M and Farmer F E (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell, 12: 707–719.

    Google Scholar 

  • Redhead C R and Palme K (1996) The genes of plant signal transduction. Crit. Rev. Plant Sei., 15: 425–454.

    CAS  Google Scholar 

  • Reggiani R and Laoreti P (2000) Evidences for the involvement of phospholipase C in the anaerobic signal transduction. Plant Cell Physiol., 41: 1392–1396.

    PubMed  CAS  Google Scholar 

  • Rhoades J D and LoveDay J (1990) Salinity in irrigated agriculture. In: American Society of Civil Engineers; Irrigation o(Agriculture Crops (Eds Steward B A and Nielsen D R), American Society of Agronomists, USA. Roosens H C J N, Thu T, Iskander M H and Jacobs M (1998) Isolation of ornithine aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol., 117: 263–271.

    Google Scholar 

  • Roxas V P, Lodhi S A, Garret D K, Mahan J R and Allen R D (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione-S-transferase/glutathione peroxidase. Plant Cell Physiol., 41: 1229–1234.

    PubMed  CAS  Google Scholar 

  • Ruegsegger A, Schmutz D and Brunold C (1990) Regulation of glutathione synthesis by cadmium in Pisum sativum L. Plant Physiol., 93: 1579–1584.

    PubMed  CAS  Google Scholar 

  • Sabehat A, Weiss D and Lurie C (1998) Heat shock proteins and cross tolerance in plants. Phvsiol Plant., 103: 437–441.

    CAS  Google Scholar 

  • Sakamoto A and Murata N (2000) Genetic engineering of glycine betaine synthesis in plants: Current status and implications for enhancement of stress tolerance. J Exp. Bot., 51: 81–88.

    PubMed  CAS  Google Scholar 

  • Sakamoto A and Murata N (2001) The use of bacterial choline oxidase, a glycine betaine synthesizing enzyme to create stress resistant transgenic plants. Plant Physiol., 125: 180–188.

    PubMed  CAS  Google Scholar 

  • Sanchez J P and Chua N H (2001) Arabidopsis PLC1 is required for secondary responses to abscisic acid signals. Plant Cell, 13: 1143–1154.

    CAS  Google Scholar 

  • Sanders D, Brownlee C and Harper J F (1999) Communicating with calcium. Plant Cell, 11: 691–706.

    PubMed  CAS  Google Scholar 

  • SatyaNarain V and Nair P M (1990) Metabolism enzymology and possible roles of 4-amino butyrate in higher plants. Phytochemistry, 29: 367–375.

    Google Scholar 

  • Saxena N P, Johanson C, Saxena M C and Silim S N (1993). Selection for drought and salinity tolerance in cool season food legumes. In: Breeding for Stress Tolerance in Cool Season Food Legumes (Eds Singh K B and Saxena M C ), John Wiley and Sons, New York, pp. 245–270.

    Google Scholar 

  • Schake S A (1995) Analysis of pea chloroplastic Mn-SOD overexpressed in tobacco. MS thesis, Texas Tech University, Lubbock, TX.

    Google Scholar 

  • Schoffl F, Prandl R and Reindl A (1998). Regulation of heat shock response. Plant Physiol., 117: 1135–1144.

    PubMed  CAS  Google Scholar 

  • Sen Gupta A, Heinen J, Holaday A S, Burke J J and Allen R D (1993a) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA, 90: 1629–1633.

    Google Scholar 

  • Sen Gupta A, Webb R P, Holaday A S and Allen R D (1993b) Overexpression of superoxide dismutase protects plants from oxidative stress. Plant Physiol., 103: 1067–1073.

    PubMed  Google Scholar 

  • Sengupta D N, Banarjee K and Rouf A (1999) Abiotic stress responsive elements, their binding factors and their utilization for the improvement of tolerance to abiotic stress in plants. J. Plant Biol., 26: 179–185.

    Google Scholar 

  • Serraj R, Shelp J B and Sinclair R T (1998) Accumulation of y-aminobutyric acid in nodulated soybean in response to drought stress. Physiol. Plant, 102: 79–86.

    CAS  Google Scholar 

  • Shankar N and Srivastava H S (2002) `Abiotic stress induced proteins and signal transduction’. In: Plant Genetic Engineering. Vol. 1. Applications and Limitations (Eds Singh R P and Jaiwal P K), Sci-Tech Pub. LCC, Houstan, USA (in press).

    Google Scholar 

  • Shen B, Jensen R G and Bohnert H J (1997) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol., 118: 1177–1183.

    Google Scholar 

  • Sheriff D W, Fisher M J, Rusitzka G and Ford C W (1986) Physiological reaction to an imposed drought by two twining pasture legumes: Macroptilium atropurpureum (desiccation sensitive) and Galactia striata (desiccation insensitive). Aust. J. Plant Physiol., 13: 431–435.

    Google Scholar 

  • Shinozaki K and Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water stressed response. Plant Physiol., 115: 327–334.

    PubMed  CAS  Google Scholar 

  • Singh R P and Srivastava H S (1983) Regulation of glutamate dehydrogenase activity by aminoacids in maize seedlings. Physiol. Plant., 57: 549–564.

    CAS  Google Scholar 

  • Sinha K M, Dachdev A, Johari R P and Mehta S L (1999) Stress induced polypeptides in Lathyurs sativus. Plant Biochem. Biotech., 8: 47–51.

    CAS  Google Scholar 

  • Sivakumar P, Sharmila P and Pardha Saradhi P (1998) Proline suppresses Rubisco activity in higher plants. Biochem. Biophys. Res. Comm., 252: 428–432.

    PubMed  CAS  Google Scholar 

  • Sivakumar P, Sharmila P and Pardha Saradhi P (2000) Proline alleviates salt stress-induced enhancement in Ribulose-1,5-bisphosphate oxygenase activity. Biochem. Biophys. Res. Comm., 279: 512–515.

    PubMed  CAS  Google Scholar 

  • Sivakumar P, Sharmila P and Pardha Saradhi P (2001) Proline suppresses Rubisco activity by dissociating small subunits from holoenzyme. Biochem. Biophys. Res. Comm., 282: 236–241.

    PubMed  CAS  Google Scholar 

  • Sugihara K, Hanagata N, Dubinsky Z, Baba S and Karube I (2000) Molecular characterization of cDNA encoding oxygen evolving enhancer protein1 increased by salt treatment in the Mangrove plant, Bruguiera gymnorrhiza. Plant Cell Physiol., 41: 1279–1285.

    CAS  Google Scholar 

  • Takahashi S, Katagiri T, Hirayama T, Yamaguchi-Shinozaki K and Shinozaki K (2001) Hyperosmotic stress induces a rapid and transient increase in inositol 1,4,5-triphosphate independent of abscisic acid in Arabidopsis cell culture. Plant Cell Physiol., 42: 214–222.

    PubMed  CAS  Google Scholar 

  • Tarczynski M C, Jensen R G and Bohnert H J (1993) Stress protection of transgenic tobacco by producing the osmolytes mannitol. Science, 259: 508–510.

    PubMed  CAS  Google Scholar 

  • Thomas J C, Sepahi M and Bonhert H J (1995) Enhancement of seed germination in high salinity by engineering mannitol-expression in Arabidopsis thaliana. Plant Cell Environ., 18: 801–806.

    CAS  Google Scholar 

  • Thomashow M F (1990) Molecular genetics of cold acclimation in higher plants. Adv. Genet., 28: 99–131.

    CAS  Google Scholar 

  • Thomashow M F (1998) Role of cold responsive gene in plant freezing tolerance. Plant Physiol., 118: 1–7.

    PubMed  CAS  Google Scholar 

  • Thomashow M F (2001) So what’s new in the field of plant cold acclimation? Lots. Plant Physiol., 125: 89–93.

    PubMed  CAS  Google Scholar 

  • Thomashow M F, Gilmour S J, Stockinger E J, Jaglo-Ottosen K R and Zarka D G (2001) Role of the Arabidopsis CBI transcriptional activators in cold acclimation. Physiol. Plant, 112: 171–175.

    CAS  Google Scholar 

  • Tuin L G and Shelp B J (1994) In situ [14C]-glutamate metabolism by developing soybean cotyledons: metabolic routes. J Plant Physiol., 143: 1–7.

    CAS  Google Scholar 

  • Tyystjarvi E, Riikonen M, Arisi A M, Ketturen R, Jouanin L and Foyer C H (1999) Photoinhibition of photosystem-II in tobacco plants overexpressing glutathione reductase and poplars overexpressing superoxide dismutase. Physiol. Plant, 105: 409–416.

    CAS  Google Scholar 

  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T and Shinozaki K A (1999) Transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell, 11: 1743–1754.

    PubMed  CAS  Google Scholar 

  • Velikov V, Yordanov I and Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain treated bean plants protective role of exogenous polyamines. Plant Sci., 151: 59–66.

    Google Scholar 

  • Wanek W and Ritcher A (1997) Biosynthesis and accumulation of D-ononitol in Vigna umbellata in response to drought stress. Physiol. Plant, 101: 416–424.

    CAS  Google Scholar 

  • Wang J, Zhang H and Allen R D (1999) Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increase protection against oxidative stress. Plant Cell Physiol., 40: 725–732.

    PubMed  CAS  Google Scholar 

  • Wellburn F A M, Creissen G P, Lake J A, Mullineaux P M and Wellburn A R (1998) Tolerance to atmospheric ozone in transgenic tobacco overexpressing glutathione synthetase in plastids. Physiol. Plant, 104: 623–629.

    CAS  Google Scholar 

  • Winicov I and Bastola D R (1999) Transgenic overexpression of the transcription factor Alfinl enhances expression of the endogenous MsPRP2 genes in Alfalfa and improves salinity tolerance of the plants. Plant Physiol., 120: 473–480.

    PubMed  CAS  Google Scholar 

  • Winicov 1 and Shirzadegan M (1997) Tissue specific modulation of salt inducible gene expression: Callus versus whole plant response in salt tolerant alfalfa. Physiol. Plant, 100: 314–319.

    CAS  Google Scholar 

  • Wood C K, Pratt J R and Moore A L (1998) Identification and characterization of cultivar-specific 22 KDa heat shock proteins from mitochondria of Pisum sativum. Physiol. Plant, 103: 369–376.

    CAS  Google Scholar 

  • Xiong C, Werner B L, Christensen E M and Oliver D J (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Physiol Plant, 126: 564–574.

    Google Scholar 

  • Xiong L and Zhu J K (2001) Abiotic stress signal transduction in plants: Molecular and genetic perspectives. Physiol. Plant, 112: 152–166.

    PubMed  CAS  Google Scholar 

  • Zenoff A M, Hital M, Galo M and Moreno H (1994). Changes in roots lipid composition and inhibition of the extrusion of protons during salt stress in two genotype of soybean resistant or susceptible to stress varietal differences. Plant Cell Physiol., 35: 729–735.

    CAS  Google Scholar 

  • Zhu J K (2001) Plant salt tolerance. Trends Plant Sci., 6: 66–76.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Singh, R.P., Usha, Rizvi, S.M.H., Sonia, Jaiwal, P.K. (2003). Genetic Engineering for Enhancing Abiotic Stress Tolerance. In: Jaiwal, P.K., Singh, R.P. (eds) Improvement Strategies of Leguminosae Biotechnology. Focus on Biotechnology, vol 10A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0109-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0109-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6331-1

  • Online ISBN: 978-94-017-0109-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics