Transformation Induced Plasticity (Trip) in a Maraging Steel

The TRIP behavior for General Loading Paths
  • T. Antretter
  • F. D. Fischer
  • U. Cihak
  • K. Tanaka
  • G. Cailletaud
  • P. Fratzl
  • B. Ortner
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 101)

Abstract

An extensive experimental program on a 9 % Ni, 12% Cr, 2% Mo steel maraging steel is introduced. For the specific purpose of studying the physical phenomenon of transformation induced plasticity this material exhibits some very desirable features: The martensite start temperature (Ms) can be found around 150°C; the martensitic finish temperature (Mf) is at ca. 80°C. The material has a yield stress of about 200 MPa at ca. 200°C (fully austenitic state) and of ca. 900 MPa at room temperature (fully martensitic state). Plastification is accompanied by rather small hardening up to a strain of roughly 8 %. Since the martensitic transformation takes place at a low temperature level upon cooling on air only, this material can be considered as an ideal testing material with practically no creep effects during and after transformation. First of all dilatation tests are demonstrated for two types of specimens: longitudinal, also called axial specimens with a fiber texture and radial specimens, as shown in Figure lb. A material characterization using Ms and Mf lines, i.e. martensite start and finish temperature monitored for different loading conditions and stress levels reveals the influence of the type of loading (tension, shear, compression). Consequently two different loading histories are tested:
  • loading above Ms and then cooling, accompanied by partial or full unloading,

  • loading at a constant temperature in the transformation temperature interval.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marketz, F., Fischer, F.D., Tanaka, K.: Micromechanics of Transformation-induced Plasticity and Variant Coalescence, Journal de Physique IV, Colloque C1, Supplément au Journal de Physique III 6 (1996), C1–445 — C1–454.Google Scholar
  2. 2.
    Fischer, F.D., Reisner, G., Werner, E., Tanaka, K., Cailletaud, G., Antretter, T.: A New View on Transformation Induced Plasticity (TRIP), Int. J. Plasticity 16 (2000), 723–748.MATHCrossRefGoogle Scholar
  3. 3.
    Fischer, F.D., Sun, Q.-P., Tanaka, K.: Transformation-Induced Plasticity (TRIP), Appl. Mech. Rev. 49 (1996), 317–364.ADSCrossRefGoogle Scholar
  4. 4.
    Fischer, F.D., Reisner, G.: A Criterion for the Martensitic Transformation of a Microregion in an Elastic-Plastic Material, Acta mater. 46 (1998), 2095–2102.CrossRefGoogle Scholar
  5. 5.
    Reisner, G., Werner, E.A., Fischer, F.D.: Micromechanical Modelling of Martensitic Transformation in Random Microstructures, Int. J. Solids & Structures 35 (1998), 2457–2473.MATHCrossRefGoogle Scholar
  6. 6.
    Fischer, F.D., Antretter, T., Azzouz, F., Cailletaud, G., Pineau, A., Tanaka, K., Nagayama K.: The Role of Backstress in Phase Transforming Steels, Archives of Mechanics 52 (2000), 569–588.MATHGoogle Scholar
  7. 7.
    Videau, J.C., Cailletaud, G., Pineau, A.: Experimental Study of the Transformation Induced Plasticity in a Cr-Ni-Mo-Al-Ti Steel, Journal de Physique IV, Colloque C1, Supplément au Journal de Physique III 6 (1996), C1–465 — C1–474.Google Scholar
  8. 8.
    Nagayama, K., Terasaki, T., Tanaka, K., Fischer, F.D., Antretter, T., Cailletaud, G., Azzouz, F.: Mechanical Properties of a Cr-Ni-Mo-Al-Ti Maraging Steel in the Process of Martensitic Transformation, Materials Science and Engineering A308 (2000), 25–37.Google Scholar
  9. 9.
    Marketz, F., Fischer, F.D.: A Mesoscale-Study on the Thermodynamic Effect of Stress on Martensitic Transformation, Met.Trans A 26A (1995), 267–278.CrossRefGoogle Scholar
  10. 10.

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • T. Antretter
    • 1
  • F. D. Fischer
    • 1
  • U. Cihak
    • 1
  • K. Tanaka
    • 2
  • G. Cailletaud
    • 3
  • P. Fratzl
    • 4
  • B. Ortner
    • 4
  1. 1.Institute of MechanicsMontanuniversität LeobenLeobenAustria
  2. 2.Dept. of Aerospace EngineeringTokyo Metropolitan Institute of TechnologyHino/TokyoJapan
  3. 3.Centre des MatériauxEcole des MinesEvry CedexFrance
  4. 4.Institute of Metal PhysicsMontanuniversität LeobenLeobenAustria

Personalised recommendations