Skip to main content

Plant Catalases

  • Chapter
Plant Peroxisomes

Abstract

The main objectives of this article are to survey current advances about selected aspects of biochemistry, molecular biology and physiological role of catalases in higher plants. The reader is also referred to other recent reviews dealing with specific aspects of catalases (Willekens et al, 1995; Scandalios et al, 1997; Zámocký and Koller, 1999; Nicholls et al, 2001). Catalase is a very effective enzyme with a high turnover number but a weak affinity for its substrate hydrogen peroxide. Catalase works as a single enzyme in plants at high hydrogen peroxide concentrations or in co-operation with other antioxidative enzymes to prevent the generation of reactive oxygen species. Therefore, the biological function of catalases becomes more and more complex. Catalases work in a bifunctional mode (see later). It is also necessary to distinguish between monofunctional catalases (typical catalases) and catalase-peroxidases like ascorbate peroxidases in plants which participate in a network system of hydrogen peroxide metabolizing enzymes. The substrate hydrogen peroxide is proposed to act as a signal molecule in cellular signal transduction and also influences processes like plant pathogen response. In this chapter, we focus on catalase acting in non-stressed plant cells. Catalases of algae will not be included into this review and data resulting from studies on catalases of heterotrophic organisms are only integrated when needed in context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvares, K., Widrow, R.J., Abu-Jadweh, G.M., Schmidt, J.V., Yelandi, A.V., Rao, M.S. and Reddy, J.K. (1992) Rat urate oxidase produced by recombinant baculovirus expression: formation of peroxisome crystalloid core-like structures. Proc. Natl. Acad. Sci. USA. 89: 4908–4912.

    PubMed  CAS  Google Scholar 

  • Aro, E.M., Virgin, I. and Andersson, B. (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta. 1143: 113–134.

    PubMed  CAS  Google Scholar 

  • Beaumont, F., Jouve, H.M., Gagnon, J., Gaillard, J. and Pelmont, J. (1990) Purification and properties of a catalase from potato tubers (Solanum tuberosum). Plant Sci. 72: 19–26.

    CAS  Google Scholar 

  • Bergdoll, M., Remy, M.H., Cagnon, C., Masson, J.M. and Dumas, P. (1997) Proline-dependent oligomerization with arm exchange. Structure. 5(3): 391–401.

    PubMed  CAS  Google Scholar 

  • Berthet, S., Nykyri, L.M., Bravo, J., Maté, M.J., Berthet-Colominas, C., Alzari, P.M., Koller, F. and Fita, I. (1997) Crystallization and preliminary structural analysis of catalase A from Saccharomyces cerevisiae. Prot. Sci. 6: 481–483.

    CAS  Google Scholar 

  • Bestwick, C.S., Brown, L.R., Bennett, M.H.R. and Mansfield, J.W. (1997) Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolica. Plant Cell. 9: 209–221.

    PubMed  CAS  Google Scholar 

  • Boldt, R. and Scandalios, J.G. (1997) Influence of UV-light on the expression of the cat2 and cat3 catalase genes in maize. Free Rad. Biol. Med. 23(3): 505–514.

    PubMed  CAS  Google Scholar 

  • Bowditch, M.I. and Donaldson, R.P. (1990) Ascorbate free-radical reduction by glyoxysomal membranes. Plant Physiol. 94: 531–537.

    PubMed  CAS  Google Scholar 

  • Bravo, J., Verdaguer, N., Tormo, J., Betzel, C, Switala, J., Loewen, P.C. and Fita, I. (1995) Crystal structure of catalase HPII from Escherichia coli. Structure. 3(5): 491–502.

    CAS  Google Scholar 

  • Bunkelmann, J. and Trelease, R.N. (1996) Ascorbate peroxidase. A prominent membrane protein in oilseed glyoxysomes. Plant Physiol. 110: 589–598.

    PubMed  CAS  Google Scholar 

  • Chan, H.T., Tarn, S.Y. and Koide, R.T. (1978) Isolation and characterization of catalase from papaya. J. Food Sci. 43: 989–991.

    CAS  Google Scholar 

  • Chandlee, J.M., Tsaftaris, A.S. and Scandalios, J.G. (1983) Purification and partly characterization of three genetically defined catalases of maize. Plant Sci. Lett. 29: 117–131.

    CAS  Google Scholar 

  • Chen, Z., Silva, H. and Klessig, D.F. (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 262: 1883–1886.

    PubMed  CAS  Google Scholar 

  • Cheng, L., Kellogg, E.W. III and Packer, L. (1981) Photoinactivation of catalase. Photochem. Photobiol. 34: 125–129.

    PubMed  CAS  Google Scholar 

  • Corpas, F.J., Palma, J.M., Sandalio, L.M., Lôpez-Huertas, E., Romero-Puertas, M.C., Barroso, J.B. and del Río, L.A. (1999) Purification of catalase from pea leaf peroxisomes: identification of five different isoforms. Free Rad. Res. 31: S235–S241.

    CAS  Google Scholar 

  • Cronshaw, J. (1964) Crystal bodies of plant cells. Protoplasma. 59: 318–325.

    CAS  Google Scholar 

  • Crookes, W.J. and Olsen, L.J. (1998) The effect of chaperones and the influence of protein assembly on peroxisomal protein import. J. Biol. Chem. 273: 17236–17242.

    PubMed  CAS  Google Scholar 

  • de Duve, C. and Baudhuin, P. (1966) Peroxisomes (microbodies and related particles). Physiol. Rev. 46: 323–357.

    PubMed  Google Scholar 

  • del Río, L.A., Palma, J.M., Sandalio, L.M., Corpas, F.J., Pastori, G.M., Bueno, P. and López-Huertas, E. (1996) Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. Biochem. Soc. Trans. 24: 434–442.

    PubMed  Google Scholar 

  • del Río, L.A., Pastori, G.M., Palma, J.M., Sandalio, L.M., Sevilla, F., Corpas, F.J., Jiménez, A., López-Huertas, E. and Hernández, J.A. (1998) The activated oxygen role of peroxisomes in senescence. Plant Physiol. 116: 1195–1200.

    PubMed  Google Scholar 

  • Diefenbach, J. and Kindl, H. (2000) The membrane-bound DnaJ protein located at the cytosolic site of glyoxysomes specifically binds the cytosolic isoform 1 of Hsp70, but not other Hsp70 species. Eur. J. Biochem. 267: 746–754.

    PubMed  CAS  Google Scholar 

  • Dounce, A.L. (1983) A proposed mechanism for the catalytic action of catalase. J. Theor. Biol. 105: 553–567.

    PubMed  CAS  Google Scholar 

  • Drumm, H. and Schöpfer, P. (1974) Effect of phytochrome on development of catalase activity and isoenzyme pattern in mustard (Sinapis alba L.) seedlings. A re-investigation. Planta 120: 13–30.

    CAS  Google Scholar 

  • Durner, J. and Klessig, D.F. (1996) Salicylic acid is a modulator of tobacco and mammalian catalases. J. Biol. Chem. 271(45): 28492–28501.

    PubMed  CAS  Google Scholar 

  • Eising, R. and Gerhardt, B. (1987) Catalase degradation in sunflower cotyledons during peroxisome transition from glyoxysomal to leaf peroxisomal function. Plant Physiol. 84: 225–232.

    PubMed  CAS  Google Scholar 

  • Eising, R. and Gerhardt, B. (1986) Activity and haematin content of catalase from greening sunflower cotyledons. Phytochem. 25(1): 27–31.

    CAS  Google Scholar 

  • Eising, R. and Süselbeck, B. (1991) Turnover of catalase haem and apoprotein moieties in cotyledons of sunflower seedlings. Plant Physiol. 97: 1422–1429.

    PubMed  CAS  Google Scholar 

  • Eising, R., Heinze, M., Kleff, S. and Tenberge, K.B. (1998) Subcellular distribution and photooxidation of catalase in sunflower. In: Antioxidants in Higher Plants: Biosynthesis, characteristics, actions and specific functions in stress defense. (Noga, G. and Schmitz, M. eds.). pp. 53–63. Shaker-Verlag, Aachen.

    Google Scholar 

  • Eising, R., Kleff, S., Ruholl, C. and Tenberge, K.B. (1996) Turnover of catalase in sunflower cotyledons. In: Proceeedings of the International Compositae Conference, Kew, 1994, Vol. 2. Biology and Utilization. (Caligary, P.D.S. and Hind, D.J.N. vol. eds.). Royal Botanic Gardens, Kew, pp. 45–60.

    Google Scholar 

  • Eising, R., Trelease, R.N. and Ni, W. (1990) Biogenesis of catalase in glyoxysomes and leaf-type peroxisomes of sunflower cotyledons. Arch. Biochem. Biophys. 278: 258–264.

    PubMed  CAS  Google Scholar 

  • Elstner, E.F. and Heupel, A. (1976) Formation of hydrogen peroxide by isolated cell wall from horseradish (Armoracia lapathifolia Gilib). Planta. 130: 175–180.

    CAS  Google Scholar 

  • Esaka, M. and Asahi, T. (1982) Purification and properties of catalase from sweet potato root microbodies. Plant Cell Physiol. 23(2): 315–322.

    CAS  Google Scholar 

  • Fagerberg, W.R. (1984) Cytochemical changes in palisade cells of developing sunflower leaves. Protoplasma. 119:21–30.

    Google Scholar 

  • Feierabend, J. and Dehne, S. (1996) Fate of the porphyrin cofactors during the light-dependent turnover of catalase and the photosystem II reaction-centre protein D1 in mature rye leaves. Planta. 198: 413–422.

    CAS  Google Scholar 

  • Feierabend, J. and Engel, S. (1986) Photoinactivation of catalase in vitro and in leaves. Arch. Biochem. Biophys. 251: 567–576.

    PubMed  CAS  Google Scholar 

  • Fita, I. and Rossmann, M.G. (1995) The NADPH binding site on beef liver catalase. Proc. Natl. Acad. Sci. USA. 82: 1604–1608.

    Google Scholar 

  • Frederick, S.E., Gruber, P.J. and Newcomb, E.H. (1975) Plant microbodies. Protoplasma. 84: 1–29.

    CAS  Google Scholar 

  • Frederick, S.E., Newcomb, E.H., Vigil, E.L. and Wergin, W.P. (1968) Fine structural characterization of plant microbodies. Planta. 8: 229–252.

    Google Scholar 

  • Frugoli, J.A., McPeek, M.A., Thomas, T.L. and McClung, R. (1998) Intron loss and gain during evolution of the catalase gene family in angiosperms. Genetics. 149: 355–365.

    PubMed  CAS  Google Scholar 

  • Frugoli, J.A., Zhong, H.H., Nuccio, M.L., McCourt, P., Thomas, T.L. and McClung, CR. (1996) Catalase is encoded by a multi-gene family in Arabidopsis thaliana Heynh. Plant Physiol. 112(1): 327–336.

    PubMed  CAS  Google Scholar 

  • Galston, A.W. (1955) Plant catalase. Meth. Enzymol. 2: 789–791.

    Google Scholar 

  • Galston, A.W., Bonnichsen, R.K. and Arnon, D.I. (1951) The preparation of highly purified spinach leaf catalase. Act. Chem. Scand. 5: 781–790.

    CAS  Google Scholar 

  • Gao, X., Marrison, J.L., Pool, M.R., Leech, R.M. and Baker, A. (1996) Castor bean isocitrate lyase lacking the putative peroxisomal targeting signal 1 ARM is imported into plant peroxisomes both in vitro and in vivo. Plant Physiol. 112: 1457–1464.

    PubMed  CAS  Google Scholar 

  • Garcia, R., Kaid, N., Vignaud, C. and Nicolas, J. (2000) Purification and some properties of catalase from wheatgerm (Triticum aestivum L.). J. Agric. Food Chem. 48: 1050–1057.

    PubMed  CAS  Google Scholar 

  • Gerhardt, B. (1987) Fatty acid β-oxidation in higher plants. In: The Metabolism, Structure, and Function of Plant Lipids. (Stumpf, P.K., Mudd, J.B. and Nés, W.D. eds.). pp. 399–404, Plenum, New York.

    Google Scholar 

  • Gerhardt, B. (1986) Basic metabolic function of the higher plant peroxisome. Physiol. Vég. 24(3): 397–410.

    CAS  Google Scholar 

  • Gianinetti, A., Cantoni, M., Lorenzoni, C, Salamini, F. and Marocco, A. (1993) Altered levels of antioxidant enzymes associated with two mutations in tomato. Physiol. Plant. 89: 157–164.

    CAS  Google Scholar 

  • Gietl, C. (1990) Glyoxysomal malate dehydrogenase from watermelon is synthesized with an amino terminal transit peptide. Procl. Natl. Acad. Sci. USA. 87: 5773–5777.

    CAS  Google Scholar 

  • Giordani A, Morlière P, Aubailly M and Santus R (1997) Photoinactivation of cellular catalase by ultraviolet radiation. Redox Report. 3(1): 49–55.

    CAS  Google Scholar 

  • Gonzalez, E. (1991) The C-terminal domain of plant catalases: implications for a glyoxysomal targeting sequence. Eur. J. Biochem. 199: 211–215.

    PubMed  CAS  Google Scholar 

  • González, E., Brush, M., Lee, V. and Wainwright, I. (1993) Evidence for a single catalase gene in castor bean. Plant Physiol. Biochem. 31(3): 379–386.

    Google Scholar 

  • Gouet, P., Jouve, H.M. and Dideberg, O. (1995) Crystal structure of Proteus mirabilis PR catalase with and without bound NADPH. J. Mol. Biol. 249: 933–954.

    PubMed  CAS  Google Scholar 

  • Gould, S.J., Keller, G.A. and Subramani, S. (1987) Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J. Cell Biol. 105: 2923–2931.

    PubMed  CAS  Google Scholar 

  • Gregory, R.P.F. (1968) An improved preparative method for spinach catalase and evaluation of some of its properties. Biochim. Biophys. Acta. 159: 429–439.

    PubMed  CAS  Google Scholar 

  • Grotjohann, N., Janning, A. and Eising, R. (1997) In vitro photoinactivation of catalase isoforms from cotyledons of sunflower (Helianthus annuus L.). Arch. Biochem. Biophys. 346(2): 208–218.

    PubMed  CAS  Google Scholar 

  • Guan, L. and Scandalios, J.G. (1998) Effects of the plant growth regulator abscisic acid and high osmoticum on the developmental expression of the maize catalase genes. Physiol. Plant. 104:413–422.

    CAS  Google Scholar 

  • Guan, L. and Scandalios, J.G. (1996) Molecular evolution of maize catalases and their relationship to other eukaryotic and prokaryotic catalases. J. Mol. Evol. 42: 570–579.

    PubMed  CAS  Google Scholar 

  • Guan, L.M., Zhao, J. and Scandalios, J.G. (2000) Cis-elements and trans-factors that regulate expression of the maize cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signalling molecule of response. Plant J. 22(2): 87–95.

    PubMed  CAS  Google Scholar 

  • Halliwell, B. (1974) Oxidation of formate by peroxisomes and mitochondria from spinach leaves. Biochem. J. 138(1) : 77–85.

    PubMed  CAS  Google Scholar 

  • Havir, E.A. and McHale, N.A. (1990) Purification and characterization of an isozyme of catalase with enhanced-peroxidatic activity from leaves of Nicotiana sylvestris. Arch. Biochem. Biophys. 283(2): 491–495.

    PubMed  CAS  Google Scholar 

  • Havir, E.A. and McHale, N.A. (1989) Enhanced peroxidatic activity in specific catalase isozymes of tobacco, barley, and maize. Plant Physiol. 91: 812–815.

    PubMed  CAS  Google Scholar 

  • Havir, E.A. and McHale, N.A. (1987) Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol. 84: 450–455.

    PubMed  CAS  Google Scholar 

  • Havir, E.A., Brisson, L.F. and Zelitch, I. (1996) Distribution of catalase isoforms in Nicotiana tabacum. Phytochem. 41(3): 699–702.

    CAS  Google Scholar 

  • Heinze, M., Reichelt, R., Kleff, S. and Eising, R. (2000) High resolution scanning electron microscopy of protein inclusions (cores) purified from peroxisomes of sunflower (Helianthus annuus L.) cotyledons. Cryst. Res. Technol. 35(6–7): 877–886.

    CAS  Google Scholar 

  • Hertwig, B., Streb, P. and Feierabend, J. (1992) Light-dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiol. 100: 1547–1553.

    PubMed  CAS  Google Scholar 

  • Heupel, R. and Heldt, H.W. (1994) Protein organization in the matrix of of leaf peroxisomes. A multi-enzyme complex involved in photorespiratory metabolism. Eur. J. Biochem. 220: 165–172.

    PubMed  CAS  Google Scholar 

  • Hirasawa, M., Gray, K.A., Shaw, R.W. and Knaff, D.B. (1987) Spectroscopic properties of spinach catalase. Biochim. Biophys. Acta. 911: 37–44.

    CAS  Google Scholar 

  • Hochman, A. and Goldberg, I. (1991) Purification and characterization of a catalase-peroxidase and a typical catalase from the bacterium Klebsiella pneumoniae. Biochim. Biophys. Acta. 1077(3): 299–307.

    PubMed  CAS  Google Scholar 

  • Hook, D.W.A. and Harding, J.J. (1997) Molecular chaperones protect catalase against thermal stress. Eur. J. Biochem. 247: 380–385.

    PubMed  CAS  Google Scholar 

  • Huang, A.H.C. and Beevers, H. (1973) Localization of enzymes within microbodies. J. Cell Biol. 58: 379–389.

    PubMed  CAS  Google Scholar 

  • Huang, A.H.C, Trelease, R.N. and Moore, T.S. (1983) Plant peroxisomes. Academic Press, New York.

    Google Scholar 

  • Ishikawa, T., Yoshimura, K., Sakai, K., Tamoi, M., Takeda, T. and Shigeoka, S. (1998) Molecular characterization and physiological role of a glyoxysome-bound ascorbate peroxidase from spinach. Plant Cell Physiol. 39(1): 23–34.

    PubMed  CAS  Google Scholar 

  • Isin, S. and Allen, R. (1991) Isolation and characterization of a pea catalase cDNA. Plant Mol. Biol. 17: 1263–1265.

    PubMed  CAS  Google Scholar 

  • Iwamoto, M., Maekawa, M., Saito, A., Higo, H. and Higo, K. (1998) Evolutionary relationship of plant catalase genes inferred from exon-intron structures: Isozyme divergence after the separation of monocots and dicots. Theor. Appl. Genet. 97: 9–19.

    CAS  Google Scholar 

  • Jiménez, A., Hernández, J.A., del Río, L.A. and Sevilla, F. (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol. 114: 275–284.

    PubMed  Google Scholar 

  • Jouve, H.M., Andreoletti, P., Gouet, P., Hajdu, J. and Gagnon, J. (1997) Structural analysis of compound I in haemoproteins: Study on Proteus mirabilis catalase. Biochimie. 79: 667–671.

    PubMed  CAS  Google Scholar 

  • Kato, A., Hayashi, M. and Nishimura, M. (1999) Oligomeric proteins containing N-terminal targeting signals are imported into peroxisomes in transgenic Arabidopsis. Plant Cell Physiol. 40(6): 586–591.

    PubMed  CAS  Google Scholar 

  • Kindl, H. (1982) Glyoxysome biogenesis via cytosolic pools in cucumber. In: Peroxisomes and glyoxysomes. (Kindl, H. and Lazarow, P.B. eds.). Ann. N.Y. Acad. Sci. 386: 314–328.

    Google Scholar 

  • Kirkman, H.N. and Gaetani, G.F. (1984) Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Proc. Natl. Acad. Sci. USA. 81(14): 4343–4347.

    PubMed  CAS  Google Scholar 

  • Kirkman, H.N., Rolfo, M., Ferraris, A.M. and Gaetani, G.F. (1999) Mechanisms of protection of catalase by NADPH. J. Biol. Chem. 274(20): 13908–13914.

    PubMed  CAS  Google Scholar 

  • Kleff, S., Trelease, R.N. and Eising, R. (1994) Nucleotide and deduced amino acid sequence of a putative higher molecular weight precursor for catalase in sunflower cotyledons. Biochim. Biophys. Acta. 1224: 463–466.

    PubMed  Google Scholar 

  • Kleff, S., Sander, S., Mielke, G. and Eising, R. (1997) The predominant protein in peroxisomal cores of sunflower cotyledons is a catalase that differs in primary structure from the catalase in the peroxisomal matrix. Eur. J. Biochem. 245: 402–410.

    PubMed  CAS  Google Scholar 

  • Klotz, M.G., Klassen, G.R. and Loewen, P.C. (1997) Phylogenetic relationships among prokaryotic and eukaryotic catalases. Mol. Biol. Evol 14(9): 951–958.

    PubMed  CAS  Google Scholar 

  • Kono, Y. and Fridovich, I. (1982) Superoxide radical inhibits catalase. J. Biol. Chem. 257(10): 5751–5754.

    PubMed  CAS  Google Scholar 

  • Kunce, CM., Trelease, R.N. and Doman, D.C. (1984) Ontogeny of glyoxysomes in maturing and germinated cotton seeds — a morphometric analysis. Planta. 161: 156–164.

    CAS  Google Scholar 

  • Kunce, CM., Trelease, R.N. and Turley, R.B. (1988) Purification and biosynthesis of cottonseed (Gossypium hirsutum L.) catalase. Biochem. J. 251: 147–155.

    PubMed  CAS  Google Scholar 

  • Lamb, J.E., Riezman, H., Becker, W.M. and Leaver, C.J. (1978) Regulation of glyoxysomal enzymes during germination of cucumber. Plant Physiol. 62: 754–760.

    PubMed  CAS  Google Scholar 

  • Lazarow, P.B. and de Duve, C. (1973) The synthesis and turnover of rat liver peroxisomes. V. Intracellular pathway of catalase synthesis. J. Cell Biol. 59: 507–524.

    PubMed  CAS  Google Scholar 

  • Low, P.S. and Merida, J.R. (1996) The oxidative burst in plant defense: function and signal transduction. Physiol. Plant. 96: 533–542.

    CAS  Google Scholar 

  • Marinos, N.G. (1965) Comments on the nature of a crystal-containing body in plant cells. Protoplasma. 60: 31–33.

    Google Scholar 

  • McClung, CR. (1997) Regulation of catalases in Arabidopsis. Free Rad. Biol. Med. 23(3): 489–496.

    PubMed  CAS  Google Scholar 

  • McNcw, J.A. and Goodman, J.M. (1994) An oligomeric protein is imported into peroxisomes in vivo. J. Cell Biol. 127(5): 1245–1257.

    Google Scholar 

  • Middelkoop, E., Wiemer, E.A.C, Tycho Schonmaker, D.E., Strijland, A. and Tager, J.M. (1993) Topology of catalase assembly in human skin fibroblasts. Biochim. Biophys. Acta. 1220: 15–20.

    PubMed  CAS  Google Scholar 

  • Mizuno, M., Kamei, M. and Tsuchida, H. (1998) Ascorbate peroxidase and catalase cooperate for protection against hydrogen peroxide generated in potato tubers during low temperature storage. Biochem. Mol. Biol. Intern. 44(4): 717–726.

    CAS  Google Scholar 

  • Mullen, R.T. and Gifford, D.J. (1993) Purification and characterization of catalase from loblolly pine (Pinus taeda L.). Plant Physiol. 103: 477–483.

    PubMed  CAS  Google Scholar 

  • Mullen, R.T. and Trelease, R.N. (1996) Biogenesis and membrane properties of peroxisomes: Does the boundary membrane serve and protect? Trends Plant Sci. 1(11): 389–394.

    Google Scholar 

  • Mullen, R.T., Lee, M.S. and Trelease, R.N. (1997a) Identification of the peroxisomal targeting signal for cottonseed catalase. Plant J. 12: 313–322.

    PubMed  CAS  Google Scholar 

  • Mullen, R.T., Lee, M.S., Flynn, R. and Trelease, R.N. (1997b) Implications for the role of accessory residues upstream of the type I peroxisomal targeting signal. Plant Physiol. 115: 881–889.

    PubMed  CAS  Google Scholar 

  • Mullen, R.T., Lisenbee, CS., Miernyk, J.A. and Trelease, R.N. (1999) Peroxisomal membrane ascorbate peroxidase is sorted to a membranous network that resembles a subdomain of the endoplasmic reticulum. Plant Cell. 11: 2167–2185.

    PubMed  CAS  Google Scholar 

  • Murshudov, G.N., Melik-Adamyan, W.R., Grebenko, A.L., Barynin, V.V., Vagin, A.A., Vainshtein, B.K., Dauter, Z. and Wilson, K.S. (1992) Three-dimensional structure of catalase from Micrococcus lysodeikticus at 1.5 Å resolution. FEES Lett. 312(2–3), 127–131.

    CAS  Google Scholar 

  • Murthy, M.R., Reid, T.J., Sicignano, A., Tanaka, N. and Rossmann, M.G. (1981) Structure of beef liver catalase. J. Mol. Biol. 152: 465–499.

    PubMed  CAS  Google Scholar 

  • Ni, W. and Trelease, R.N. (1991a) Two genes encode the two subunits of cottonseed catalase. Arch. Biochem. Biophys. 289(2): 237–243.

    PubMed  CAS  Google Scholar 

  • Ni, W. and Trelease, R.N. (1991b) Post-transcriptional regulation of catalase isozyme expression in cotton seeds. Plant Cell. 3: 737–744.

    PubMed  CAS  Google Scholar 

  • Ni, W., Trelease, R.N. and Eising, R. (1990) Two temporally synthesized charge subunits interact to form the five isoforms of cottonseed catalase. Biochem. J. 269: 233–238.

    PubMed  CAS  Google Scholar 

  • Nicholls, P., Fita, I. and Loewen, P.C. (2001) Enzymology and structure of catalases. Adv. Inorg. Chem. 51:51–106.

    CAS  Google Scholar 

  • Novikoff, A.B. and Goldfischer, S. (1969) Visualization of peroxisomes (microbodies) and mitochondria with diaminobenzidine. J. Histochem. Cytochem. 17: 675–680.

    PubMed  CAS  Google Scholar 

  • Okada, H., Ueda, M., Sugaya, T., Atomi, H., Mozaffar, S., Hishida, T., Teranishi, Y., Okazaki, K., Takechi, T., Kamiryo, T. and Tanaka, A. (1987) Catalase gene of the yeast Candida tropicalis. Eur. J. Biochem. 170: 105–110.

    PubMed  CAS  Google Scholar 

  • Orr, C.W.M. (1967) Studies on ascorbic acid. I. Factors influencing the ascorbate-mediated inhibition of catalase. Biochemistry. 6(10): 2995–3000.

    PubMed  CAS  Google Scholar 

  • Osumi, T., Tsukamoto, T., Hata, S., Yokota, S., Miura, S., Fujiki, Y., Hijakata, M., Miyazawa, S. and Hashimoto, T. (1991) Amino-terminal pre-sequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targeting. Biochem. Biophys. Res. Comm. 181(3): 947–954.

    PubMed  CAS  Google Scholar 

  • Ota, Y., Ario, T., Hayashi, K., Nakagawa, T., Hattori, T., Maeshima, M. and Asahi, T. (1992) Tissue-specific isoforms of catalase subunits in castor bean seedlings. Plant Cell Physiol. 33(3): 225–232.

    CAS  Google Scholar 

  • Pool, M.R., López-Huertas, E. and Baker, A. (1998) Characterization of intermediates in the process of plant peroxisomal protein import. EMBO J. 17(23): 6854–6862.

    PubMed  CAS  Google Scholar 

  • Purdue, P.E. and Lazarow, P.B. (1996) Targeting of human catalase to peroxisomes is dependent upon a novel COOH-terminal peroxisomal targeting sequence. J. Cell Biol. 134: 849–862.

    PubMed  CAS  Google Scholar 

  • Rachubinski, R.A. and Subramani, S. (1995) How proteins penetrate peroxisomes. Cell 83: 525–528.

    PubMed  CAS  Google Scholar 

  • Redinbaugh, M.G., Wadsworth, G.J. and Scandalios, J.G. (1988) Characterization of catalase transcripts and their differential expression in maize. Biochim. Biophys. Acta. 951: 104–116.

    PubMed  CAS  Google Scholar 

  • Reid, T.J. III, Murthy, M.R., Sicignano, A., Tanaka, N., Musick, W.D. and Rossmann, M.G. (1981) Structure and haem environment of beef liver catalase at 2.5 Å resolution. Proc. Natl. Acad. Sci. USA. 78(8): 4767–4771.

    PubMed  CAS  Google Scholar 

  • Rüffer, M., Steipe, B. and Zenk, M.H. (1995) Evidence against specific binding of salicylic acid to plant catalase. FEBS Lett. 377: 175–180.

    PubMed  Google Scholar 

  • Salguero, J. and Böttger, M. (1995) Secreted catalase activity from roots of developing maize (Zea mays L.) seedlings. Protoplasma. 184: 72–78.

    CAS  Google Scholar 

  • Scandalios, J.G. (1974) Subcellular localization of catalase variants coded by two genetic loci during maize development. J. Hered. 65: 28–32.

    CAS  Google Scholar 

  • Scandalios, J.G. (1965) Subunit dissociation and recombination of catalase isozymes. Proc. Natl. Acad. Sci. USA. 53: 1035–1040.

    PubMed  CAS  Google Scholar 

  • Scandalios, J.G., Guan, L.M. and Polidoros, A. (1997) Catalases in plants: gene structure, properties, regulation, and expression. In: Oxidative stress and the molecular biology of antioxidant defences (Scandalios, J.G., ed.). pp. 343–406. Plainview, New York, Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Scandalios, J.G., Tsaftaris, A.S., Chandlee, J.M. and Skadsen, R.W. (1984) Expression of the developmentally regulated catalase (Cat) genes in maize. Dev. Genet. 4: 281–293.

    CAS  Google Scholar 

  • Scandalios, J.G., Tong, W.F. and Roupakias, D.G. (1980) Cat3, a third gene locus coding for a tissue-specific catalase in maize: genetics, intracellular location and some biochemical properties. Mol. Gen. Genet. 179: 33–41.

    CAS  Google Scholar 

  • Schäfer, L. and Feierabend, J. (2000) Photoinactivation and protection of glycolate oxidase in vitro and in leaves. Z. Naturforsch. 55c: 361–372.

    Google Scholar 

  • Schiefer, S., Teifel, W. and Kindl, H. (1976) Plant microboby proteins. I. Purification and characterization of catalase from leaves of Lens culinaris. Physiol. Chem. Hoppe-Seyler 357: 163–175.

    CAS  Google Scholar 

  • Schittenhelm, J., Toder, S., Fath, S., Westphal, S. and Wagner, E. (1994) Photoinactivation of catalase in needles of Norway spruce. Physiol. Plant. 90: 600–606.

    CAS  Google Scholar 

  • Schonbaum, G.R. and Chance, B. (1976) Catalase. In: The Enzymes. Boyer, P.D. (ed.). Vol. XIII, S. pp. 363–408, Third edition. Academic Press, New York, San Francisco, London.

    Google Scholar 

  • Schuhes, N.P., Zelitch, I., McGonigle, B. and Nelson, T. (1994) The primary leaf catalase gene from Nicotiana tabacum and Nicotiana sylvestris. Plant Physiol. 106: 399–400.

    Google Scholar 

  • Shang, W. and Feierabend, J. (1999) Dependence of catalase photoinactivation in rye leaves on light intensity and quality and characterization of a chloroplast-mediated inactivation in red light. Photosynth. Res. 59: 201–213.

    CAS  Google Scholar 

  • Sheptovitsky, Y.G. and Brudvig, G.W. (1996) Isolation and characterization of spinach photosystem II membrane-associated catalase and polyphenol oxidase. Biochemistry. 35: 16255–16263.

    PubMed  CAS  Google Scholar 

  • Shi, W.M., Muramoto, Y., Ueda, A. and Tabake, T. (2001) Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpression in Arabidopsis thaliana. Gene. 273(1): 23–27.

    CAS  Google Scholar 

  • Sichak, S.P. and Dounce, A.L. (1986) Analysis of the peroxisomal mode of catalase. Arch. Biochem. Biophys. 249(2): 286–295.

    PubMed  CAS  Google Scholar 

  • Sitte, P. (1958) Die Ultrastruktur von Wurzelmeristemzellen der Erbse (Pisum sativum L.). Eine elektronenmikroskopische Studie. Protoplasma. 49: 447–522.

    Google Scholar 

  • Skadsen, R.W. and Scandalios, J.G. (1986) Evidence for processing of maize catalase 2 and purification of its messenger RNA aided by translation of antibody-bound polysomes. Biochemistry. 25: 2027–2032.

    PubMed  CAS  Google Scholar 

  • Streb, P. and Feierabend, J. (1996) Oxidative stress responses accompanying photoinactivation of catalase in NaCl-treated rye leaves. Bot. Acta. 109: 125–132.

    CAS  Google Scholar 

  • Streb, P., Feierabend, J. and Bligny, R. (1997) Resistance to photoinhibition of photosystem II and catalase and antioxidative protection in high mountain plants. Plant Cell Environ. 20: 1030–1040.

    CAS  Google Scholar 

  • Subramani, S.(1996) Protein translocation into peroxisomes. J. Biol. Chem. 271: 32483–32486.

    PubMed  CAS  Google Scholar 

  • Subramani, S. (1993) Protein import into peroxisomes and biogenesis of the organelle. Ann.Rev. Cell Biol. 9: 445–478.

    PubMed  CAS  Google Scholar 

  • Surpin, M. and Chory, J. (1997) The co-ordination of nuclear and organellar genome expression in eukaryotic cells. Essays Biochem. 32: 113–125.

    PubMed  CAS  Google Scholar 

  • Suzuki, M., Ario, T., Hattori, T., Nakamura, K. and Asahi, T. (1994) Isolation and characterization of two tightly linked catalase genes from castor bean that are differentially regulated. Plant Mol. Biol. 25: 507–516.

    PubMed  CAS  Google Scholar 

  • Tenberge, K.B. and Eising, R. (1995) Immunogold labelling indicates high catalase concentration in amorphous and crystalline inclusions of sunflower (Helianthus annuus L.) peroxisomes. Hist. J. 27: 184–195.

    CAS  Google Scholar 

  • Tenberge, K.B., Ruholl, C., Heinze, M. and Eising, R. (1997) Purification and immuno-electron microscopical characterization of crystalline inclusions from plant peroxisomes. Protoplasma. 196: 142–154.

    CAS  Google Scholar 

  • Thornton, R.M. and Thimann, K.V. (1964) On a crystal-containing body in cells of the oat coleoptile. J. Cell Biol. 20: 345–350.

    PubMed  CAS  Google Scholar 

  • Tolbert, N.E. (1980) Microbodies — peroxisomes and glyoxysomes. In: The Biochemistry of Plants. (Stumpf, P.K. and Conn, E.E. eds.). pp. 359–388. Academic Press, New York.

    Google Scholar 

  • Trelease, R.N., Lee, M.S., Banjoko, A. and Bunkelmann, J. (1996a) C-terminal polypeptides are necessary and sufficient for in vivo targeting of transiently-expressed proteins to peroxisomes in suspension-cultured plant cells. Protoplasma. 195: 156–167.

    CAS  Google Scholar 

  • Trelease, R.N., Xie, W., Lee, M.S. and Mullen, R.T. (1996b) Rat liver catalase is sorted to peroxisomes by its C-terminal tripeptide Ala-Asn-Leu, not by the internal Ser-Lys-Leu motif. Eur. J. Cell Biol. 71: 248–258.

    PubMed  CAS  Google Scholar 

  • Trindade, H., Karmali, A. and Pais, M.S. (1988) One step purification of catalase from leaves of Zantedeschia aethiopica. Biochimie. 70: 1769–1763.

    Google Scholar 

  • Vainshtein, B.K., Melik-Adamyan, W.R., Barynin, V.V., Vagin, A.A., Grebenko, A.I., Borisov, V.V., Bartels, K.S., Fita, I. and Rossmann, M.G. (1986) Three-dimensional structure of catalase from Pénicillium vitale at 2.0 Å resolution. J. Mol. Biol. 188: 49–61.

    PubMed  CAS  Google Scholar 

  • van den Bosch, K.A. and Newcomb, E.H. (1986) Immunogold localization of nodule-specific uricase in developing soybean root nodules. Planta. 167: 425–436.

    Google Scholar 

  • van Eyk, A.D., Litthauer, D. and Oelofsen, W. (1992) The isolation and partial characterization of catalase and a peroxidase active fraction from human white adipose tissue. Eur. J. Biochem. 24(7): 1101–1109.

    Google Scholar 

  • Vaughn, K.C. and Stegink, S.J. (1987) Peroxisomes of soybean (Glycine max) root nodule vascular parenchyma cells contain a ‘nodule-specific’ urate oxidase. Physiol. Plant. 71: 251–256.

    CAS  Google Scholar 

  • Vigil, E.L. (1970) Cytochemical and developmental changes in microbodies (glyoxysomes) and related organelles of castor bean endosperm. J. Cell Biol. 46: 435–454.

    PubMed  CAS  Google Scholar 

  • von Ossowski, I., Hausner, G. and Loewen, P.C. (1993) Molecular evolutionary analysis based on the amino acid sequence of catalase. J. Mol. Evol. 37: 71–76.

    Google Scholar 

  • Von Ossowski, I., Mulvey, M.R., Leco, P.A., Borys, A. and Loewen, P.C. (1991) Nucleotide sequence of Escherichia coli katE, which encodes catalase HPII. J. Bacteriol. 173: 514–520.

    Google Scholar 

  • Walton, P.A., Hill, P.E. and Subramani, S. (1995) Import of stably folded proteins into peroxisomes. Mol. Biol. Cell 6: 675–683.

    PubMed  CAS  Google Scholar 

  • Wang, J., Zhang, H. and Allen, R.D. (1999) Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol. 40(7): 725–732.

    PubMed  CAS  Google Scholar 

  • Welinder, K.G. (1991) Bacterial catalase-peroxidases are gene duplicated members of the plant peroxidase superfamily. Biochim. Biophys. Acta. 1080(3): 215–220.

    PubMed  CAS  Google Scholar 

  • Willekens, H., Inzé, D., van Montagu, M. and van Camp, W. (1995) Catalase in plants. Mol. Breed. 1:207–228.

    CAS  Google Scholar 

  • Willekens, H., Langebartels, C, Tiré, G, van Montagu, M., Inzé, D. and van Camp, W. (1994) Differential expression of catalase genes in Nicotiana plumbaginifolia. Proc. Natl. Acad. Sci. USA. 91: 10450–10454.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, J. and Nishimura, M. (1984) Purification of glyoxysomal catalase and immunochemical comparison of glyoxysomal and leaf peroxisomal catalase in germinating pumpkin cotyledons. Plant Physiol. 74: 261–267.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, K., Mori, H. and Nishimura, M. (1995) A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant Cell Physiol. 36: 1157–1162.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, J., Nishimura, M. and Akazawa, T. (1986) Purification and characterization of haem-containing low-activity form of catalase from greening pumpkin cotyledons. Eur. J. Biochem. 159:315–322.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, J., Nishimura, M. and Akazawa, T. (1984) Maturation of catalase precursor proceeds to a different extent in glyoxysomes and leaf peroxisomes of pumpkin cotyledons. Proc. Natl Acad. Sci. USA. 81: 4809–4813.

    PubMed  CAS  Google Scholar 

  • Yoshimura, K., Yabuta, Y., Ishikawa, T. and Shigeoka, S. (2000) Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stress. Plant Physiol. 123: 223–233.

    PubMed  CAS  Google Scholar 

  • Zámocký, M. and Koller, F. (1999) Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. Prog. Biophys. Mol. Biol. 72: 19–66.

    PubMed  Google Scholar 

  • Zhang, H., Wang, J., Nickel, U., Allen, R.D. and Goodman, H.M. (1997) Cloning and expression of an Arabidopsis gene encoding a putative peroxisomal ascorbate peroxidase. Plant Mol. Biol. 34: 967–971.

    PubMed  CAS  Google Scholar 

  • Zhong, H.H. and McClung, C.R. (1996) The circadian clock gates expression of two Arabidopsis catalase genes to distinct and opposite circadian phases. Mol. Gen. Genet. 251(2): 196–203.

    PubMed  CAS  Google Scholar 

  • Zhong, H.H., Young, J.C., Pease, E.A., Hangarter, R.P. and McClung, R.C. (1994) Interactions between light and the circadian clock in the regulation of CAT2 expression in Arabidopsis. Plant Physiol. 104: 889–898.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heinze, M., Gerhardt, B. (2002). Plant Catalases. In: Baker, A., Graham, I.A. (eds) Plant Peroxisomes. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9858-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9858-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6007-5

  • Online ISBN: 978-94-015-9858-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics