Skip to main content

Targeting and Import of Matrix Proteins into Peroxisomes

  • Chapter

Abstract

Peroxisomes were recognized as cellular inclusions almost fifty years ago, but for most of the time since then their biogenesis, i.e. their assembly, differentiation, proliferation, and inheritance, has been poorly understood. For instance, compared with the impressive advances that were made in elucidating how protein constituents are sorted to the ER, mitochondria, chloroplasts, and nuclei, relatively little was known about these processes with respect to peroxisomes until the late 1980s. Then, three significant breakthroughs in our understanding of the biogenesis of peroxisomes led to intensified research that has since shifted the organelle from relative obscurity to the forefront of cell biology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amery, L., Brees, C., Baes, M., Setoyama, C., Miura, R., Mannaerts, G. and Van Veldhoven P. (1998) C-terminal tripeptide Ser-Asn-Leu (SNL) of human D-asparate oxidase is a functional peroxisome-targeting signal. Biochem. 336: 367–371.

    CAS  Google Scholar 

  • Authier, F., Bergeron, J.J., Ou, W.J., Rachubinski, R.A., Posner, B.I. and Walton, P.A. (1995). Degradation of the cleaved leader peptide of thiolase by a peroxisomal proteinase. Proc. Natl. Acad. Sci. USA. 92: 3859–3863.

    PubMed  CAS  Google Scholar 

  • Baerends, R.J., Rasmussen, S.W., Hilbrands, R.E., van der Heide, M., Faber, K.N., Reuvekamp, P.T., Kiel, J.A., Cregg, J.M., van der Klei, I.J. and Veenhuis M. (1996) The Hansenula polymorpha PER9 gene encodes a peroxisomal membrane protein essential for peroxisome assembly and integrity. J. Biol. Chem. 271: 8887–88894.

    PubMed  CAS  Google Scholar 

  • Baker, A. (1996) In vitro systems in the study of peroxisomal protein import. Experientia. 52: 1055–1062.

    PubMed  CAS  Google Scholar 

  • Baker, A., Charlon, W., Johnson, B., Lopez-Huertas, E., Oh, J., Sparkes, I. and Thomas, J. (2000) Biochemical and molecular approaches to understanding protein import into peroxisomes. Biochem. Soc. Trans. 28: 499–504.

    PubMed  CAS  Google Scholar 

  • Banjoko, A. and Trelease, R. (1995) Development and application of an in vivo plant peroxisome import system. Plant Physiol. 107: 1201–1208.

    PubMed  CAS  Google Scholar 

  • Behari, R. and Baker, A. (1993) The carboxyl terminus of isocitrate lyase is not essential for import into glyoxysomes in an in vitro system. J. Biol. Chem. 268: 7318–7322.

    Google Scholar 

  • Blattner, J., Dorsam, H. and Clayton, C. (1995) Function of N-terminal import signals in trypanosome microbodies. FEBS Lett. 360: 310–314.

    PubMed  CAS  Google Scholar 

  • Blattner, J., Swinkels, B., Dorsam, H., Prospero, T., Subramani, S. and Clayton, C. (1992) Glycosome assembly in trypanosomes: variations in the acceptable degeneracy of a COOH-terminal microbody targeting signal. J. Cell Biol. 119: 1129–1136.

    PubMed  CAS  Google Scholar 

  • Bongcam, V., MacDonald-Comber Petetot, J., Mittendorf, V., Robertson, E.J., Leech, R.M., Qin, Y.M., Hiltunen, J.K., and Poirier Y. (2000) Importance of sequences adjacent to the terminal tripeptide in the import of a peroxisomal Candida tropicalis protein in plant peroxisomes. Planta. 211: 150–157.

    PubMed  CAS  Google Scholar 

  • Brickner, D. G. and Olsen, L. (1998) Nucleotide triphosphates are required for the transport of glycolate oxidase into peroxisomes. Plant Physiol. 116: 309–317.

    PubMed  CAS  Google Scholar 

  • Brickner, D.G, Brickner, J.H. and Olsen, L.J. (1998) Sequence analysis of a cDNA encoding Pex5p, a peroxisomal targeting signal type 1 receptor from Arabidopsis. Plant Physiol. 118: 330.

    Google Scholar 

  • Brickner, D.G., Harada, J. and Olsen L. (1997) Protein transport into higher plant peroxisomes. Plant Physiol. 113: 1213–1221.

    PubMed  CAS  Google Scholar 

  • Corpas, F. and Trelease, R. (1997) The plant 73 kDa peroxisomal membrane protein (PMP73) is immunorelated to molecular chaperones. Eur. J. Cell Biol. 73: 49–57.

    PubMed  CAS  Google Scholar 

  • Cregg, J.M., van der Klei, I.J., Suiter, G.J., Veenhuis, M. and Harder, W. (1990). Peroxisome-deficient mutants of Hansenula polymorpha. Yeast. 6: 87–97.

    CAS  Google Scholar 

  • Crookes, W. and Olsen, L. (1999) Peroxin puzzles and folded freight: peroxisomal protein import in review. Naturwissenschaften. 86: 51–61.

    PubMed  CAS  Google Scholar 

  • Crookes, W. and Olsen, L. (1998) The effects of chaperones and the influence of protein assembly on peroxisomal protein import. J. Biol. Chem. 273: 17236–17242.

    PubMed  CAS  Google Scholar 

  • Cutler, S., Ehrhardt, D., Griffits, J. and Somerville, C. (2000) Random GFPxDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc. Natl. Acad. Sci. USA. 97: 3718–3723.

    PubMed  CAS  Google Scholar 

  • Dammai, V. and Subramani, S. (2001) The human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisomal matrix and recycled to the cytosol. Cell. 105: 187–196.

    PubMed  CAS  Google Scholar 

  • Diefenbach J. and Kindl, H. (2000) The membrane-bound DnaJ protein located at the cytosolic site of glyoxysomes specifically binds the cytosolic isoform 1 of Hsp70, but not other Hsp70 species. Eur. J. Biochem. 267: 746–754.

    PubMed  CAS  Google Scholar 

  • Distel, B., Erdmann, R., Gould, S., Blobel, G., Crane, D., Cregg, J., Dodt, G., Fujiki, Y., Goodman, J., Just, W., Kiel, J., Kunau, W., Lazarow, P., Mannaerts, G., Moser, H., Osumi, T., Rachubinski, R., Roscher, A., Subramani, S., Tabak, H., Tsukamoto, T., Valle, D., van der Klei, I., van Veldhoven, P. and Veenhuis, M. (1996) A unified nomenclature for peroxisome biogenesis factors. J. Cell Biol. 135: 1–3.

    PubMed  CAS  Google Scholar 

  • Distel, B., Veenhuis, M. and Tabak, H.F. (1987) Import of alcohol oxidase into peroxisomes of Saccharomyces cerevisiae. EMBO J. 10: 3111–3116.

    Google Scholar 

  • Dyer, J.M. and Mullen, R.T. (2001) Immunocytological localization of two plant fatty acid desaturases in the endoplasmic reticulum. FEBS Lett. 494: 44–47.

    PubMed  CAS  Google Scholar 

  • Dyer, J.M., McNew, J.A. and Goodman, J.M. (1996) The sorting sequence of the peroxisomal integral membrane protein PMP47 is contained within a short hydrophilic loop. J. Cell Biol. 133: 269–280.

    PubMed  CAS  Google Scholar 

  • Elgersma, Y., Kwast, L., van den Berg, M., Snyder, W.B., Distel, B., Subramani, S. and Tabak, H.F. (1997) Overexpression of Pexl5p, a phosphorylated peroxisomal integral membrane protein required for peroxisome assembly in S.cerevisiae, causes proliferation of the endoplasmic reticulum membrane. EMBO J. 16: 7326–7341.

    PubMed  CAS  Google Scholar 

  • Elgersma, Y., van Roermund, C.W., Wanders, R.J. and Tabak, H.F. (1995) Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene. EMBO J. 14: 3472–3479.

    PubMed  CAS  Google Scholar 

  • Elgersma, Y., Vos, A., van den Berg, M., van Roermund, C., van der Sluijs, P., Distel, B. and Tabak, H. (1996) Analysis of the carboxyl-terminal peroxisomal targeting signal 1 in a homologous context in Saccharomyces cerevisiae. J. Biol. Chem. 271: 26375–26382.

    CAS  Google Scholar 

  • Erdmann, R. (1994) The peroxisomal targeting signal of 3-oxoacyl-CoA thiolase from Saccharomyces cerevisiae. Yeast. 10: 935–944.

    PubMed  CAS  Google Scholar 

  • Erdmann, R., Veenhuis, M., Mertens, D. and Kunau, W. (1989) Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 86: 5419–5423.

    PubMed  CAS  Google Scholar 

  • Evers, M., Harder, W. and Veenhuis, M. (1995) In vitro dissociation and re-assembly of peroxisomal alcohol oxidases of Hansenula polymorpha and Pichia pastoris. FEBS Lett. 368: 293–296.

    PubMed  CAS  Google Scholar 

  • Flynn, C., Mullen, R. and Trelease, R. (1998) Mutational analyses of a type 2 peroxisomal targeting signal that is capable of directing oligomeric protein import into tobacco BY-2 glyoxysomes. Plant J. 16: 709–720.

    PubMed  CAS  Google Scholar 

  • Fransen, M., Brees, C., Van Veldhoven, P. and Mannaerts, G. (1996) The visualization of preoxisomal proteins containing a C-terminal targeting sequence on western blot by using the biotinylated PTS1-receptor. Anal. Biochem. 242: 26–30.

    PubMed  CAS  Google Scholar 

  • Frydman, J. (2001) Folding of newly translated proteins in vivo: the role of molecular chaperons. Ann. Rev. Biochem. 70: 603–647.

    PubMed  CAS  Google Scholar 

  • Frydman, J. and Hartl, F.U. (1996) Principles of chaperone-assisted protein folding: differences between in vitro and in vivo mechanisms. Science. 272: 1497–1502.

    PubMed  CAS  Google Scholar 

  • Frydman, J., Nimmesgern, E., Ohtsuka, K. and Hartl, F. (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature. 14: 96–97.

    Google Scholar 

  • Fujiki, Y. (2000) Peroxisome biogenesis and peroxisome biogenesis disorders. FEBS Lett. 476: 42–46.

    PubMed  CAS  Google Scholar 

  • Fujiki, Y. and Lazarow, P. (1985) Post-translational import of fatty acyl-coA oxidase and catalase into peroxisomes of rat liver in vitro. J. Biol. Chem. 260: 5603–5609.

    CAS  Google Scholar 

  • Fung, K. and Clayton, C. (1991) Recognition of a peroxisomal tripeptide entry signal by the glycosomes of Trypanosoma brucei. Mol. Biochem. Parasitol. 45: 261–264.

    PubMed  CAS  Google Scholar 

  • Gao, X., Marrison, J.L., Pool, M.R., Leech, R.M. and Baker, A. (1996) Castor bean isocitrate lyase lacking the putative peroxisomal targeting signal is imported into plant peroxisomes both in vivo and in vitro. Plant Physiol. 112: 1457–1464.

    PubMed  CAS  Google Scholar 

  • Gerbhardt, J.S., Wadsworth, G.J. and Matthews, B. (1998) Characterization of a single soybean cDNA encoding cytosolic and glyoxysomal isozymes of aspartate aminotransferase. Plant Mol. Biol. 37:99–108.

    Google Scholar 

  • Gietl, C., Faber, K., Van Der Klei, I. and Veenhuis, M. (1994) Mutational analysis of the N-terminal topogenic signal of watermelon glyoxsomal malate dehydrogenase using the heterologous host Hansenula polymorpha. Proc. Natl. Acad. Sci. USA. 91: 3151–3155.

    PubMed  CAS  Google Scholar 

  • Gietl, C., Wimmer, B., Adamec, J. and Kalousek, F. (1997) A cysteine endopeptidase isolated from castor bean endosperm microbodies processes the glyoxysomal malate dehydrogenase precursor protein. Plant Physiol. 113: 863–871.

    PubMed  CAS  Google Scholar 

  • Glover, J., Andrews, D. and Rachubinski, A. (1994b) Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc. Natl. Acad. Sci. USA. 91: 10541–10545.

    PubMed  CAS  Google Scholar 

  • Glover, J., Andrews, D., Subramani, S. and Rachubinski, R. (1994a) Mutagenesis of the amino targeting signal of Saccharomyces cerevisiae 3-ketoacyl-CoA thiolase reveals conserved amino acids required for import into peroxisomes in vivo. J. Biol. Chem. 269: 7558–7563.

    PubMed  CAS  Google Scholar 

  • Gould, S.J. and Valle, D. (2000) Peroxisome biogenesis disorders: genetics and cell biology. Trends Genet 16: 340–345.

    PubMed  CAS  Google Scholar 

  • Gould, S.J., Keller, G.A. and Subramani, S. (1988) Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. J. Cell Biol. 107: 897–905.

    PubMed  CAS  Google Scholar 

  • Gould, S.J., Keller, G.A. and Subramani, S. (1987) Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J. Cell Biol. 105: 2923–2931.

    PubMed  CAS  Google Scholar 

  • Gould, S.J., Keller, G.A., Hosken, N., Wilkinson, J. and Subramani, S. (1989) A conserved tripeptide sorts protein to peroxisomes. J. Cell Biol. 108: 1657–1664.

    PubMed  CAS  Google Scholar 

  • Gould, S.J., Keller, S., Schneider, M., Howell, S., Garrard, L., Goodman, J., Distel, B., Tabak, H. and Subramani, S. (1990a) Peroxisomal protein import is conserved between yeast, plants, insects and mammals. EMBO J. 9: 85–90.

    PubMed  CAS  Google Scholar 

  • Gould, S.J., Krisans, S., Keller, G. and Subramani, S. (1990b) Antibodies directed against the peroxisomal targeting signal of firefly luciferase recognize multiple mammalian peroxisomal proteins. J. Cell Biol. 110: 27–34.

    PubMed  CAS  Google Scholar 

  • Gould, S.J., McCollum, D., Spong, A.P., Heyman, J.A. and Subramani, S. (1992) Development of the yeast Pichia pastoris as a model organism for a genetic and molecular analysis of peroxisome assembly. Yeast. 8: 613–628.

    PubMed  CAS  Google Scholar 

  • Harano, T., Nose, S., Uezu, R., Shimizu, N. and Fujiki, Y. (2001) Hsp70 regulates the interaction between the peroxisome targeting signal type 1 (PTS1)-receptor Pex5p and PTS1. Biochem. 357: 157–165.

    CAS  Google Scholar 

  • Haiti, F.U. (1996) Molecular chaperones in cellular protein folding. Nature. 381: 571–579.

    Google Scholar 

  • Hausier, T., Stierhof, Y., Wirtz, E. and Clayton, C. (1996) Import of a DHFR hybrid protein into glycosomes in vivo is not inhibited by the folate-analogue aminopterin. J. Cell Biol. 132: 311–324.

    Google Scholar 

  • Hayashi, H. (2000) Plant peroxisomes: molecular basis of the regulation of their functions. J. Plant Res. 113: 103–109.

    CAS  Google Scholar 

  • Hayashi, H., De Bellis, L., Yamaguchi, K., Kato, A., Hayashi, M. and Nishimura, M. (1998) Molecular characterization of a glyoxysomal long chain acyl-CoA oxidase that is synthesized as a precursor of higher molecular mass in pumpkin. J. Biol. Chem. 273: 8301–8307.

    PubMed  CAS  Google Scholar 

  • Hayashi, M., Aoki, M., Kato, A., Kondo, M. and Nishimura, M. (1996) Transport of chimaeric proteins that contain a carboxy-terminal targeting signal into microbodies. Plant J. 10: 225–234.

    PubMed  CAS  Google Scholar 

  • Hayashi, M., Aoki, M., Kondo, M. and Nishimura, M. (1997) Changes in targeting efficiencies of proteins to plant microbodies caused by amino acid substitutions in the carboxy-terminal tripeptide. Plant Cell Physiol. 38: 759–768.

    PubMed  CAS  Google Scholar 

  • Hayashi, M., Toriyama-Kato, K., Kondoa, M. and Nishimura, M. (1998) 2,4-dichlorophenoxybutyric acid-resistant mutants of Arabidopsis have defects in glyoxysomal fatty acid β-oxidation. Plant Cell 10: 183–196.

    PubMed  CAS  Google Scholar 

  • Hayashi, M., Nito, K., Toriyama-Kato, K., Kondo, M., Yamaya, T. and Nishimura, M. (2000) AtPexl4p maintains peroxisomal functions by determining protein targeting to have three kinds of plant peroxisomes. EMBO J. 19: 5701–5710.

    PubMed  CAS  Google Scholar 

  • Heinemann, P. and Just, W. (1992) Peroxisomal protein import in vivo evidence for a novel translocation competent compartment. FEBS Lett. 300: 179–182.

    PubMed  CAS  Google Scholar 

  • Hettema, E.H., Distel, B. and Tabak, H.F. (1999) Import of proteins into peroxisomes. Biochim. Biophys. Acta. 1451: 17–34.

    PubMed  CAS  Google Scholar 

  • Hettema, E., Ruigrok, C., Koerkamp, M., van de Berg, M., Tabak, H. and Braakman, I. (1998) The cytosolic DnaJ-like protein Djplp is involved specifically in peroxisomal protein import. J. Cell Biol. 142:421–434.

    PubMed  CAS  Google Scholar 

  • Honsho, M. and Fujiki, Y. (2001) Topogenesis of peroxisomal membrane protein requires a short, positively charged intervening-loop sequence and flanking hydrophobic segments. Study using human membrane protein PMP34. J. Biol. Chem. 276: 9375–9382.

    PubMed  CAS  Google Scholar 

  • Horng, J., Behari, R., Burke, C. and Baker, A. (1995) Investigation of the energy requirement and targeting signal for the import of glyocate oxidase into glyoxysomes. Eur. J. Biochem. 230: 157–163.

    PubMed  CAS  Google Scholar 

  • Imanaka, T., Small, G. and Lazarow, P. (1987) Translocation of acyl-CoA oxidase into peroxisomes requires ATP hydrolysis, but not a membrane potential. J. Cell Biol. 105: 2915–2922.

    PubMed  CAS  Google Scholar 

  • Jones, J.M., Morrell, J.C. and Gould, S.J. (2001) Multiple distinct targeting signals in integral peroxisomal membrane proteins. J. Cell Biol. 153: 1141–1150.

    PubMed  CAS  Google Scholar 

  • Kaplan, C.P., Thomas, J.E., Charlton, W.L. and Baker, A. (2001) Identification and characterisation of PEX6 orthologues from plants. Biochim. Biophys. Acta. 1539: 173–180.

    PubMed  CAS  Google Scholar 

  • Karpichev, I. and Small, G. (2000) Evidence for a novel pathway for the targeting of a Saccharomyces cerevisiae peroxisomal protein belonging to the isomerase/hydratase family. J. Cell Sci. 113:533–544.

    PubMed  CAS  Google Scholar 

  • Kato, A., Hayashi, M. and Nishimura, M. (1999) Oligomeric proteins containing N-terminal targeting signals are imported into peroxisomes in transgenic Arabidopsis. Plant Cell Physiol. 40:586–591.

    PubMed  CAS  Google Scholar 

  • Kato, A., Hayashi, M., Kondo, M. and Nishimura, M. (2000) Transport of peroxisomal proteins synthesized as large precursors in plants. Cell Biochem. Biophys. 32: 269–275.

    PubMed  CAS  Google Scholar 

  • Kato, A., Hayashi, M., Kondo, M. and Nishimura, M. (1996) Targeting and processing of a chimaeric protein with the N-terminal presequence of the precursor to glyoxysomal citrate synthase. Plant Cell 8: 1601–1611.

    PubMed  CAS  Google Scholar 

  • Kato, A., Takedda-Yoshikawa, Y., Hayashi, M., Kondo, M., Hara-Nishimura, I. and Nishimura, M. (1998) Glyoxysomal malate dehydrogenase in pumpkin: cloning of a cDNA and functional analysis of its presequence. Plant Cell Physiol. 39: 186–195.

    PubMed  CAS  Google Scholar 

  • Keegstra, K. and Cline, K. (1999) Protein import and routing systems of chloroplasts. Plant Cell. 11:557–570.

    PubMed  CAS  Google Scholar 

  • Keller, G., Krisans, S., Gould, S., Sommer, J., Wang, C., Schliebs, W., Kunau, W., Brody, S. and Subramani, S. (1991) Evolutionary conservation of a microbody targeting signal that targets proteins to peroxisomes, glyoxysomes and glycosomes. J. Cell Biol. 114: 893–904.

    PubMed  CAS  Google Scholar 

  • Kragler, F., Lametschwandtner, G., Christmann, J., Hartig, A. and Harada, J. (1998) Identification and analysis of the plant peroxisomal targeting signal 1 receptor NtPEX5. Proc. Natl Acad. Sci. USA. 95: 13336–13341.

    PubMed  CAS  Google Scholar 

  • Lametschwandtner, G., Brocard, C., Fransen, M., Van Veldhoven, P., Berger, J. and Hartig, A. (1998) The difference in recognition of terminal tripeptides as peroxisomal targeting signal 1 between yeast and human is due to different affinities of their receptor Pex5p to the cognate signal and to the residues adjacent to it. J. Biol. Chem. 273: 33635–33643.

    PubMed  CAS  Google Scholar 

  • Lazarow, P. and Fujiki, Y. (1985) Biogenesis of peroxisomes. Ann. Rev. Cell Biol. 1: 489–530.

    PubMed  CAS  Google Scholar 

  • Lee, M., Mullen, R. and Trelease, R. (1997) Oilseed isocitrate lyases lacking their essential type 1 peroxisomal targeting signal are piggybacked to glyoxysomes. Plant Cell. 9: 185–197.

    PubMed  CAS  Google Scholar 

  • Legakis J. and Terlecky, S. (2001) PTS2 protein import into mammalian cells. Traffic. 2: 252–260.

    PubMed  CAS  Google Scholar 

  • Leiper, J., Oatey, P. and Danpure, C. (1996) Inhibition of alanine: glyoxyate aminotransferase 1 dimerization is a prerequisite for its peroxisome-to-mitochondrion mistargeting in primary hyperoxaluria type 1.J. Cell Biol. 135: 939–951.

    PubMed  CAS  Google Scholar 

  • Lin, Y., Sun, L., Nguyen, L.V., Rachubinski, R.A. and Goodman, H.M. (1999) The Pex16p homologue SSE1 and storage organelle formation in Arabidopsis seeds. Science. 284: 328–330.

    PubMed  CAS  Google Scholar 

  • Lopez-Huertas, E. and Baker, A. (1999) Peroxisome Biogenesis. In: Transport of Molecules Across Microbial Membranes. (Broome-Smith, J.K., Baumberg, S., Stirling, C.J., Ward, F.B., eds.). pp. 205–238. Proc. Symp. Soc. Gen. Microbiol. Cambridge University Press.

    Google Scholar 

  • Lopez-Huertas, E., Charlton, W.L., Johnson, B., Graham, I.A. and Baker, A. (2000) Stress induces peroxisome biogenesis genes. EMBO J. 19: 6770–6777.

    PubMed  CAS  Google Scholar 

  • Lopez-Huertas, E., Oh, J. and Baker, A. (1999) Antibodies against Pex14p block ATP-independent binding of matrix proteins to peroxisomes in vitro. FEB S Lett. 459: 227–229.

    CAS  Google Scholar 

  • Makita, T. (1995) Molecular organization of hepatocyte peroxisomes. Int. Rev. Cytol. 160: 303–352.

    PubMed  CAS  Google Scholar 

  • Marrison, J., Onyeocha, I., Baker, A. and Leech, R. (1993) Recognition of peroxisomes by immunofluorescence in transformed and untransformed tobacco cells. Plant Physiol. 103: 1055–1059.

    PubMed  CAS  Google Scholar 

  • McNew, J. and Goodman, J. (1996) The targeting and assembly of peroxisomal proteins: some old rules do not apply. Trends Biochem. Sci. 21: 54–58.

    PubMed  CAS  Google Scholar 

  • McNew, J. and Goodman, J. (1994) An oligomeric protein is imported into peroxisomes in vivo. J. Cell Biol. 127: 1245–1257.

    CAS  Google Scholar 

  • Middelkoop, E., Strijland, A. and Tager, J. (1991) Does aminotriazeole inhibit import of catalase into peroxisomes by retarding unfolding? FEBS Lett. 279: 79–82.

    PubMed  CAS  Google Scholar 

  • Miernyk, J.A. (1999) Protein folding in the plant cell. Plant Physiol 121: 695–703.

    PubMed  CAS  Google Scholar 

  • Miura, S., Kasuya-Arai, I., Mori, H., Miyazawa, S., Osumi, T., Hashimoto, T. and Fujiki, Y. (1992) Carboxyl-terminal consenus Ser-Lys-Leu-related tripeptide of peroxisomal proteins functions in vitro as a minimal peroxisome-targeting dignal. J. Biol. Chem. 267: 14405–14411.

    PubMed  CAS  Google Scholar 

  • Miura, S., Miyazawa, S., Osumi, T., Hashimoto, T. and Fujiki, Y. (1994) Post-translational import of 3-ketoacyl-CoA thiolase into rat liver peroxisomes in vitro. J. Biochem. 115: 1064–1068.

    PubMed  CAS  Google Scholar 

  • Miyazawa, S., Osumi, T., Hashimoto, T., Ohno, K. and Miura, S. (1989) Peroxisome targeting signal of rat liver acyl-coenzyme A oxidase resides at the carboxy terminus. Mol. Cell. Biol. 9:83–91.

    PubMed  CAS  Google Scholar 

  • Morand, O.H., Allen, L.A., Zoeller, R.A. and Raetz, C.R. (1990) A rapid selection for animal cell mutants with defective peroxisomes. Biochim. Biophys. Acta. 1034: 132–141.

    PubMed  CAS  Google Scholar 

  • Motley, A., Hettma, E., Ketting, R., Plasterk, R. and Tabak, H. (2000) Caenorhabditis elegans has a single pathway to target matrix proteins to peroxisomes. EMBO Reports. 1: 40–46.

    PubMed  CAS  Google Scholar 

  • Motley, A., Lumb, M., Oatey, P., Jennings, P., De Zoysa, P., Wanders, R., Tabak, H. and Danpure, C. (1995) Mammalian alanine/glyoxyate aminotransferase 1 is imported into peroxisomes via the PTS1 translocation pathway. Increased degeneracy and context specificity of the mammalian PTS1 motif and implications for the peroxisomes-to-mitochondrion mistargeting of AGT in primary hyperoxauria type 1. J. Cell Biol. 131: 95–109.

    PubMed  CAS  Google Scholar 

  • Mullen, R.T. and Trelease, R.N. (2000) The sorting signals for peroxisomal membrane-bound ascorbate peroxidase are within its C-terminal tail. J. Biol. Chem. 275: 16337–16344.

    PubMed  CAS  Google Scholar 

  • Mullen, R.T., Flynn, C.R. and Trelease, R.N. (2001a) How are peroxisomes formed? The role of the endoplasmic reticulum and peroxins. Trends Plant Sci. 6: 256–261.

    PubMed  CAS  Google Scholar 

  • Mullen, R.T., Lee, M. and Trelease, R.N. (1997b) Identification of the peroxisomal targeting signal for cottonseed catalase. Plant J. 12: 313–322.

    PubMed  CAS  Google Scholar 

  • Mullen, R.T., Lee, M., Flynn, C.R. and Trelease, R.N. (1997a) Diverse amino acid residues functions within the type 1 peroxisomal targeting signal. Plant Physiol. 115: 881–889.

    PubMed  CAS  Google Scholar 

  • Mullen, R.T., Lisenbee, C.S., Flynn, C.R. and Trelease, R.N. (2001b) Stable and transient expression of chimaeric peroxisomal membrane proteins induces an independent ‘zippering’ of peroxisomes and an endoplasmic reticulum subdomain. Planta. In press.

    Google Scholar 

  • Mullen, R.T., Lisenbee, CS., Miernyk, J.A. and Trelease, R.N. (1999) Peroxisomal membrane ascorbate peroxidase is sorted to a membranous network that resembles a subdomain of the endoplasmic reticulum. Plant Cell. 11: 2167–2185.

    PubMed  CAS  Google Scholar 

  • Nuttley, W.M., Brade, A.M., Gaillardin, C., Eitzen, G.A. and Glover, J.R. (1992) Rapid identification and characterization of peroxisomal assembly mutants in Yarrowia lipolytica. Yeast. 9:507–517.

    Google Scholar 

  • Olivier, L., Kovacs, W., Masuda, K., Keller, G. and Krisans, S. (2000) Identification of peroxisomal targeting signals in cholesterol biosynthetic enzymes: AA-CoA thiolase HMG-CoA synthase, MPPD, and FPP synthase. J. Lipid Res. 41: 1921–1935.

    PubMed  CAS  Google Scholar 

  • Olsen, L.J. (1998) The surprising complexity of peroxisome biogenesis. Plant Mol. Biol. 38: 163–189.

    PubMed  CAS  Google Scholar 

  • Olsen, L.J., Ettinger, W.F., Damsz, B., Matsudaira, K., Webb, M.A. and Harada, J.J. (1993) Targeting of glyoxysomal proteins to peroxisomes in leaves and roots of a higher plant. Plant Cell. 5: 941–952.

    PubMed  CAS  Google Scholar 

  • Onyeocha, I., Beehari, R. and Baker, A. (1993) Targeting of castor bean glyoxysomal isocitrate lyase to tobacco leaf peroxisomes. Plant Mol. Biol. 22: 385–396.

    PubMed  CAS  Google Scholar 

  • Osumi, T., Tsukamoto, T., Hata, S., Yokota, S., Miura, S., Fujiki, Y., Hijikata, M., Miyazawa, S. and Hashimoto T. (1991) Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targeting. Biochem. Biophys. Res. Commun. 181: 947–954.

    PubMed  CAS  Google Scholar 

  • Pause, B., Saffrich, R., Hunziker, A., Ansorge, W. and Just, W. (2000) Targeting of the 22 kDa integral peroxisomal membrane protein. FEBS Lett. 471: 23–28.

    PubMed  CAS  Google Scholar 

  • Pool, M., Lopez-Huertas, E. and Baker, A. (1998b) Characterization of intermediates in the process of plant peroxisomal protein import. EMBO J. 17: 6854–6862.

    PubMed  CAS  Google Scholar 

  • Pool, M., Lopez-Huertas, E., Horng, J. and Baker, A. (1998a) NADPH is a specific inhibitor of protein import into glyoxysomes. Plant J. 15: 1–14.

    PubMed  CAS  Google Scholar 

  • Pratt, W., Krishna, P. and Olsen, L. (2001) Hsp90-binding immunophilins in plants: the protein movers. Trends Plant Sci. 6: 54–58.

    PubMed  CAS  Google Scholar 

  • Preisig-Müller, R., Muster, G. and Kindl, H. (1994) Heat shock enchances the amount of prenylated DnaJ protein at membranes of glyoxysomes. Eur. J. Biochem. 219: 57–63.

    PubMed  Google Scholar 

  • Purdue, P. and Lazarow, P. (1996) Targeting of human catalase to peroxisomes is dependent upon a novel COOH-terminal peroxisomal targeting sequence. J. Cell Biol. 134: 849–862.

    PubMed  CAS  Google Scholar 

  • Rapp, S., Soto, U., Just, W. (1993) Import of firefly luciferase into peroxisomes of permeabilized Chinese hamster ovary cells: A model system to study peroxisomal protein import in vitro. Exp. Cell Res. 205: 59–65.

    CAS  Google Scholar 

  • Sacksteder, K.A. and Gould, S.J. (2000) The genetics of peroxisome biogenesis. Ann. Rev. Genet 34: 623–652.

    PubMed  CAS  Google Scholar 

  • Schmid, M., Simpson, D., Kalousek, F. and Gietl, C. (1998) A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment. Planta. 206: 466–475.

    PubMed  CAS  Google Scholar 

  • Schumann, U., Gietl, C. and Schmid, M. (1999a) Sequence analysis of a cDNA encoding Pex7p, a peroxisomal targeting signal 2 receptor from Arabidopsis thaliana. Plant Physiol. 120: 339.

    Google Scholar 

  • Schumann, U., Gietl, C. and Schmid, M. (1999b) Sequence analysis of a cDNA encoding Pex10p, a zinc-binding peroxisomal integral membrane protein from Arabidopsis thaliana. Plant Physiol. 119: 1147.

    Google Scholar 

  • Small, G.M., Imanaka, T., Shio, H. and Lazarow, P.B. (1987) Efficient association of in vitro translation products with purified stable Candida tropicalis peroxisomes. Mol. Cell. Biol. 7: 1848–1855.

    PubMed  CAS  Google Scholar 

  • Smith, M. and Schnell, D. (2001) Peroxisomal protein import: The paradigm shifts. Cell. 105: 293–296.

    PubMed  CAS  Google Scholar 

  • Subramani, S. (1996) Convergence of model systems for peroxisome biogenesis. Curr. Opin. Cell Biol. 8: 513–518.

    PubMed  CAS  Google Scholar 

  • Subramani, S. (1993) Protein import into peroxisomes and biogenesis of the organelle. Ann. Rev. Cell Biol. 9: 445–478.

    PubMed  CAS  Google Scholar 

  • Subramani, S. (1992) Targeting of proteins into the peroxisomal matrix. J. Mem. Biol. 125: 99–106.

    CAS  Google Scholar 

  • Subramani, S., Koller, A. and Snyder, W.B. (2000) Import of peroxisomal matrix and membrane proteins. Ann. Rev. Biochem. 69: 399–418.

    PubMed  CAS  Google Scholar 

  • Swinkels, B., Gould, S. and Subramani, S. (1992) Targeting efficiencies of various permutations of the consensus C-terminal peroxisomal targeting signal. FEBS Lett. 305: 133–136.

    PubMed  CAS  Google Scholar 

  • Swinkels, B., Gould, S., Bodnar, A., Rachubinski, A. and Subramani, S. (1991) A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J. 10: 3255–3262.

    PubMed  CAS  Google Scholar 

  • Taylor, K., Kaplan, C., Gao, X. and Baker, A. (1996) Localization and targeting of isocitrate lyases in Saccharomyces cerevisiae. Biochem J. 319: 255–262.

    PubMed  CAS  Google Scholar 

  • Terlecky, S.R. and Fransen, M. (2000) How peroxisomes arise. Traffic. 1: 465–473.

    PubMed  CAS  Google Scholar 

  • Terlecky, S., Legakis, J., Hueni, S. and Subramani, S. (2001) Quantitative analysis of peroxisomal protein import in vitro. Exp. Cell Res. 263: 98–106.

    CAS  Google Scholar 

  • Titorenko, V.I. and Rachubinski, R.A. (2001a) Dynamics of peroxisome assembly and function. Trends Cell Biol. 11: 22–29.

    PubMed  CAS  Google Scholar 

  • Titorenko, V.I. and Rachubinski, R.A. (2001b) The life cycle of the peroxisome. Nat. Rev. Mol. Cell Biol. 2: 357–368.

    PubMed  CAS  Google Scholar 

  • Titorenko, V.I., Smith, J., Szilard, R. and Rachubinski, R. (1998) Pex20p of the yeast Yarrowia lipolytica is required for the oligomerization of thiolase in the cytosol and for its targeting to the peroxisome. J. Cell Biol. 142: 403–420.

    PubMed  CAS  Google Scholar 

  • Trelease, R., Choe, S. and Jacobs, B. (1994) Conservative amino acid substitutions of the C-terminal tripeptide (Ala-Arg-Met) on cottonseed isocitrate lyase preserve import in vivo into mammalian cell peroxisomes. Eur. J. Cell Biol. 65: 269–279.

    PubMed  CAS  Google Scholar 

  • Trelease, R., Lee, M., Banjoko, A. and Bunkelmann J. (1996a) C-Terminal polypeptides are necessary and sufficient for in vivo targeting of transiently-expressed proteins to peroxisomes in suspension-cultured plant cells. Protoplasma. 195: 156–167.

    CAS  Google Scholar 

  • Trelease, R.N., Xie, W., Lee, M.S. and Mullen, R.T. (1996b) Rat liver catalase is sorted to peroxisomes by its C-terminal tripeptide Ala-Asn-Leu, not by the internal Ser-Lys-Leu motif. Eur. J. Cell Biol. 71: 248–258.

    PubMed  CAS  Google Scholar 

  • Usada, N., Johkura, K., Hachiya, T. and Nakazawa, A. (1999) Immunoelectron microscopy of peroxisomes employing the antibody for the SKL sequence PTS1 c-terminus common to peroxisomal enzymes. J. Histochem. Cytochem. 47: 1119–1126.

    Google Scholar 

  • Volokita, M. (1991) The carboxy-terminal end of glycolate oxidase directs a foreign protein into tobacco leaf peroxisomes. Plant J. 1: 361–366.

    PubMed  CAS  Google Scholar 

  • Walton, P., Gould, S., Feramisco, J. and Subramani, S. (1992a) Transport of microinjected proteins into peroxisomes of mammalian cells: inability of Zellweger cell lines to import proteins with the SKL tripeptide peroxisomal targeting signal. Mol. Cell Biol. 12: 531–541.

    CAS  Google Scholar 

  • Walton, P., Hill, P. and Subramani, S. (1995) Import of stably folded proteins into peroxisomes. Mol. Biol. Cell 6: 675–683.

    CAS  Google Scholar 

  • Walton, P., Wendland, M., Subramani, S., Rachubinski, R. and Welch, W. (1994) Involvement of 70-kD heat-shock proteins in peroxisomal import. J. Cell Biol. 125: 1037–1046.

    PubMed  CAS  Google Scholar 

  • Wang, X., Unruh, M.J. and Goodman, J.M. (2001) Discrete targeting signals direct Pmp47 to oleate-induced peroxisomes in Saccharomyces cerevisiae. J. Biol. Chem. 276: 10897–10905.

    PubMed  CAS  Google Scholar 

  • Waterham, H.R., Russell, K., de Vries, Y. and Cregg, J.M. (1997) Peroxisomal targeting, import, and assembly of alcohol oxidase in Pichiapastoris. J. Cell Biol. 139: 1419–1431.

    CAS  Google Scholar 

  • Waterham, H.R., Titorenko, V.I., Haima, P., Cregg, J.M., Harder, W. and Veenhuis, M. (1994) The Hansenula polymorpha PERI gene is essential for peroxisome biogenesis and encodes a peroxisomal matrix protein with both carboxy- and amino-terminal targeting signals. J. Cell Biol. 127: 737–749.

    PubMed  CAS  Google Scholar 

  • Wendland, M. and Subramani, S. (1993) Cytosol-dependent peroxisomal protein import in a permeabilized cell system. J. Cell Biol. 120: 675–685.

    PubMed  CAS  Google Scholar 

  • Wimmer, C., Lottspeich, F., Van Der Klei, I., Veenhuis, M. and Gietl, C. (1997) The glyoxysomal and plastid molecular chaperones (70-kDa Heat shock protein) of watermelon cotyledons are encoded by a single gene. Proc. Natl. Acad. Sci. USA. 94: 13624–13629.

    PubMed  CAS  Google Scholar 

  • Wimmer, C., Schmid, M., Veenhuis, M. and Gietl C. (1998) The plant PTS1 receptor: similarities and differences to its human and yeast counterparts. Plant J. 16: 453–464.

    PubMed  CAS  Google Scholar 

  • Wolins, N. and Donaldson, R. (1997) Binding of the peroxisomal targeting sequence SKL is specified by a low-affinity site in castor bean glyoxysomal membranes. Plant Physiol. 113: 943–949.

    PubMed  CAS  Google Scholar 

  • Yang, X., Purdue, P. and Lazarow, P. (2001) Ecilp uses a PTS1 to enter peroxisomes: either its own or that of a partner, Dcilp. Eur. J. Cell Biol. 80: 126–138.

    PubMed  CAS  Google Scholar 

  • Zoeller, R.A., Allen, L.A., Santos, M.J., Lazarow, P.B., Hashimoto, T., Tartakoff, A.M. and Raetz, CR. (1989) Chinese hamster ovary cell mutants defective in peroxisome biogenesis. Comparison to Zellweger syndrome. J. Biol. Chem. 264: 21872–21878.

    PubMed  CAS  Google Scholar 

  • Zolman, B.K., Yoder, A. and Barrel, B. (2000) Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes. Genet 156: 1323–1337.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mullen, R.T. (2002). Targeting and Import of Matrix Proteins into Peroxisomes. In: Baker, A., Graham, I.A. (eds) Plant Peroxisomes. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9858-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9858-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6007-5

  • Online ISBN: 978-94-015-9858-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics