Skip to main content

Part of the book series: Tree Physiology ((TREE,volume 3))

Abstract

Organic acids and aldehydes are ubiquitous chemical constituents in the atmosphere which are partially emitted from vegetation. Numerous publications indicate that formic and acetic acid as well as formaldehyde and acetaldehyde are of particular quantitative and qualitative importance for tropospheric chemistry. Other aldehydes and organic acids in the atmosphere which are possibly derived from biogenic sources include oxalic, propionic and pyruvic acids (Lunde et al. 1977; Norton et al. 1983; Kawamura et al. 1985; Andreae et al. 1987, 1988; Hofmann et al. 1997) as well as propanal, butanal and isobutanal (Isidorov et al. 1985; König et al. 1995). In remote areas, some semi-volatile aldehydes (hexanal, heptanal, octanal, nonanal, decanal, undecanal) were present ubiquitously in the atmosphere (Yokouchi et al. 1990). Acetaldehyde and formaldehyde concentrations measured in the atmosphere amounted to 0.3 to 5.0 ppbv at rural and forested sites, but increased up to 176 ppbv in urban areas (Table 1). The concentrations of acetic and formic acid are in a similar range between approximately 0.1 and 10.5 ppbv at urban and 0.1 and 7.5 ppbv at semi-rural and rural sites (Table 2). Less information is available for the concentrations of higher molecular weight aldehydes and carboxylic acids in ambient air. Values measured for these compounds varied between 0.01 and 0.26 ppbv (organic acids, Table 2) and 0.02 and 81 ppbv (aldehydes, Table 3). Due to their high reactivity (and therefore short half-life), the ambient mixing ratios of these compounds depend directly on the rates of production and destruction and only to a minor extent on long-range transport. In addition to anthropogenic sources, vegetation is considered a significant source, as well as a sink of these compounds. This chapter summarizes the actual knowledge on exchange processes of organic acids and aldehydes between trees and the atmosphere and discusses factors controlling these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson LG, Lanning JA, Barrell R, Miyagishima J, Jones RH and Wolfe P (1996) Sources and sinks of formaldehyde and acetaldehyde: an analysis of Denver’s ambient concentration data. Atmos Environ 30: 2113–2123

    Article  CAS  Google Scholar 

  • Andreae MO, Talbot RW, Andreae TW and Harriss RC (1988) Formic and acetic acid over the Central Amazon region, Brazil. 1. Dry Season. J Geophys Res 93: 1616–1624

    Google Scholar 

  • Andreae MO, Talbot RW and Li S-M (1987) Atmospheric measurements of pyruvic and formic acid. J Geophys Res 92: 6635–6641

    Article  CAS  Google Scholar 

  • Arey J, Winer AM, Atkinson R, Aschmann SM, Long WD and Morrison CL (1991) The emission of (Z)-3-hexen-1-ol, (Z)-3-hexenylacetate and other oxygenated hydrocarbons from agricultural plant species. Atmos Environ 25A, 1063–1075

    Article  Google Scholar 

  • Baez AP, Belmont R and Padilla H (1995) Measurements of formaldehyde and acetaldehyde in the atmosphere of Mexico City. Environ Pollut 89: 163–167

    Article  PubMed  CAS  Google Scholar 

  • Benning L and Wahner A (1998) Measurements of atmospheric formaldehyde (HCHO) and acetaldehyde (CH3CHO) during POPCORN 1994 using 2.4-DNPH coated silica cartridges. J Atmos Chem 31: 105–117

    Article  CAS  Google Scholar 

  • Buttery RG, Ling LC and Wellso SG (1982) Oat leaf volatiles: possible insect attractants. J Agr Food Chem 30: 791–792

    Article  CAS  Google Scholar 

  • Ciccioli P, Brancaleoni E, Frattoni M, Cecinato A and Brachetti A (1993) Ubiquitous occurrence of semi-volatile carbonyl compounds in tropospheric samples and their possible sources. Atmos Environ 27: 1891–1901

    Article  Google Scholar 

  • Cleveland WS, Graedel TE and Kleiner B (1977) Urban formaldehyde: observed correlation with source emissions and photochemistry. Atmos Environ 11: 357–360

    Article  CAS  Google Scholar 

  • Colas des Francs-Small C, Ambard-Bretteville F, Small ID and Remy R (1993) Identification of a major soluble protein in mitochondria from nonphotosynthetic tissues as NAD-dependent formate dehydrogenase. Plant Physiol 102: 1171–1177

    Article  Google Scholar 

  • Dawson GA and Farmer JC (1988) Soluble atmospheric trace gases in the southwestern United States 2. Organic Species HCHO, HCOOH, CH3COOH. J Geophys Res 93: 5200–5206

    Article  CAS  Google Scholar 

  • Enders G, Dlugi R, Steinbrecher R, Clement B, Daiber R, Eijk J v., Gab S, Haziza M, Helas G, Herrmann U, Kessel M, Kesselmeier J, Kotzias D, Kourtidis K, Kurth H-H, McMillan RT, Roider G, Schürmann W, Teichmann U and Torres L (1992) Biosphere/atmosphere interactions: integrated research in a European coniferous forest ecosystem. Atmos Environ 26: 171–189

    Google Scholar 

  • Gabriel R, Schäfer L, Gerlach C, Rausch T and Kesselmeier J (1999) Factors controlling the emissions of volatile organic acids from leaves of Quercus ilex L. ( Holm oak ). Atmos Environ 33: 1347–1355

    Google Scholar 

  • Giese M, Bauer-Doranth U, Langebartels C and Sandermann H (1994) Detoxification of formaldehyde by the spider plant (Chlorophytum comosum L.) and by soybean (Glycine max L.) cell-suspension cultures. Plant Physiol 104: 1301–1309

    PubMed  CAS  Google Scholar 

  • Granby K, Christensen CS and Lohse C (1997) Urban and semi-rural observations of carboxylic acids and carbonyls. Atmos Environ 31: 1403–1415

    Article  CAS  Google Scholar 

  • Grosjean D, Miguel AH and Tavares TM (1990) Urban air pollution in Brazil: Acetaldehyde and other carbonyls. Atmos Environ 24: 101–106

    Google Scholar 

  • Grosjean D (1988) Aldehydes, carboxylic acids and inorganic nitrate during NSMCS. Atmos Environ 22: 1637–1648

    Article  CAS  Google Scholar 

  • Grosjean D (1989) Organic acids in southern California air: Ambient concentrations, mobile source emissions, in situ formation and removal processes. Environ Sci Technol 23: 1506–1514

    Article  CAS  Google Scholar 

  • Grosjean D, Swanson RD and Ellis EC (1983) Carbonyls in Los Angeles air: contribution of direct emissions and photochemistry. Sci Total Environ 28: 65–85

    Article  Google Scholar 

  • Guenther AP, Zimmerman P and Wildermuth M (1994) Natural volatile organic compound emission rate estimates for U.S. woodland landscapes. Atmos Environ 28: 1197–1210

    Article  CAS  Google Scholar 

  • Hahn JR, Steinbrecher R and Slemr J (1991) Study of the emission of low molecular-weight organic compounds by various plants. EUROTRAC Annual Report, Part 4, BIATEX. 230235

    Google Scholar 

  • Harris GW, Mackay GI, Iguchi T, Mayne LK and Schiff HI (1989) Measurements of formaldehyde in the troposphere by tunable diode laser absorption spectroscopy. J Atmos Chem 8: 119–137

    Article  CAS  Google Scholar 

  • Hartmann WR, Andreae MO and Helas G (1989) Measurements of organic acids over Central Germany. Atmos Environ 23: 1531–1534

    Article  CAS  Google Scholar 

  • Hastie DR, Shepson PB, Sharma S and Schiff HI (1993) The influence of nocturnal boundary layer on secondary trace species in the atmosphere. Atmos Environ 27: 533–541

    Article  Google Scholar 

  • Haszpra L, Szilagyi I, Demeter A, Turanyi T and Berces T (1991) Non-methane hydrocarbon and aldehyde measurements in Budapest, Hungary. Atmos Environ 25: 2103–2110

    Google Scholar 

  • Hatanaka A (1993) The biogeneration of green odour by green leaves. Phytochemistry 34: 1201–1218

    Article  CAS  Google Scholar 

  • Helas G, Bingemer H and Andreae MO (1992) Organic acids over Equatorial Africa: Results from DECAFE 88. J Geophys Res 97: 6187–6193

    Article  CAS  Google Scholar 

  • Hofmann U, Weller D, Ammann Ch, Jork E and Kesselmeier J (1997) Cryogenic trapping of atmospheric organic acids under laboratory and field conditions. Atmos Environ 31: 12751284

    Google Scholar 

  • Holzinger R, Sandoval-Soto L, Rottenberger S, Crutzen PJ and Kesselmeier J (2000) Emissions of volatile organic compounds from Quercus ilex L. measured by Proton Transfer Reaction Mass spectrometry ( PTR-MS) under different environmental conditions. J Geophys Res 105: 20573–20579

    Google Scholar 

  • Hoshika Y (1982) Gas chromatographic determination of lower fatty acids in air at part-pertrillion levels. Anal Chem 54: 2433–2437

    Article  PubMed  CAS  Google Scholar 

  • Hourton-Cabassa C, Ambard-Bretteville F, Moreau F, Davy de Virville J, Rémy R and Colas des Francs C (1998) Stress induction of mitochondrial formate dehydrogenase in potato leaves. Plant Physiol 116: 627–635

    Article  PubMed  CAS  Google Scholar 

  • Isidorov VA, Zenkevich IG and Ioffe BV (1985) Volatile organic compounds in the atmosphere of forests. Atmos Environ 19: 1–8

    Article  CAS  Google Scholar 

  • Kalabokas P, Carlier P, Fresnet P, Mouvier G and Toupance G (1988) Field studies of aldehyde chemistry in the Paris area. Atmos Environ 22: 149–155

    Google Scholar 

  • Kawamura K, Ng LL and Kaplan IR (1985) Determination of organic acids (C1–C10) in the atmosphere, motor exhausts, and engine oils. Environ Sci Technol 19: 1082–1086

    Article  PubMed  CAS  Google Scholar 

  • Kesselmeier J, Bode K, Gerlach C and Jork E-M (1998) Exchange of atmospheric formic and acetic acids with trees and crop plants under controlled chamber and purified air conditions. Atmos Environ 32: 1765–1775

    Article  CAS  Google Scholar 

  • Kesselmeier J, Bode K and Helas G (1992) Exchange of organic acids between trees and the atmosphere. EUROTRAC Annual Report 1992, BIATEX. 151–153

    Google Scholar 

  • Kesselmeier J, Bode K, Hofmann U, Müller H, Schäfer L, Wolf A, Ciccioli P, Brancaleoni E, Cecinato A, Frattoni M, Foster P, Ferrari C, Jacob V, Fugit JL, Dutaur L, Simon V and Torres L (1997) The BEMA-Project: Emission of short chained organic acids, aldehydes and monoterpenes from Quercus ilex L. and Pinus pinea L. in relation to physiological activities, carbon budget and emission algorithms. Atmos Environ 31: 119–133

    Article  CAS  Google Scholar 

  • Kesselmeier J and Staudt M (1999) Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. J Atmos Chem 33: 23–88

    Article  CAS  Google Scholar 

  • Khare P, Satsangi GS, Kumar N, Maharaj Kumari K and Srivastava SS (1997) HCHO, HCOOH and CH3COOH in air and rain water at a rural tropical site in North Central India. Atmos Environ 31: 3867–3875

    Article  CAS  Google Scholar 

  • Khwaja H (1995) Atmospheric concentrations of carboxylic acids and related compounds at a semiurban site. Atmos Environ 29: 127–129

    Article  CAS  Google Scholar 

  • Kimmerer TW and Kozlowski TT (1982) Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress. Plant Physiol 69: 840–847

    Article  PubMed  CAS  Google Scholar 

  • Kimmerer TW and MacDonald RC (1987) Acetaldehyde and ethanol biosynthesis in leaves of plants. Plant Physiol 84: 1204–1209

    Article  PubMed  CAS  Google Scholar 

  • Kirstine W, Galbally I, Ye Y and Hooper M (1998) Emissions of volatile organic compounds (primarily oxygenated species) from pasture. J Geophys Res 103: 10605–10619

    Article  CAS  Google Scholar 

  • König G, Brunda M, Puxbaum H, Hewitt CN, Duckham SC and Rudolph J (1995) Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species. Atmos Environ 29: 861–874

    Article  Google Scholar 

  • Kreuzwieser J, Kühnemann F, Martis A, Rennenberg H and Urban W (2000) Diurnal pattern of acetaldehyde emission by flooded poplar trees. Acta Fac Rerum Phy 108: 79–86

    CAS  Google Scholar 

  • Kreuzwieser J, Scheerer U and Rennenberg H (1999) Metabolic origin of acetaldehyde emitted by trees. J Exp Bot 50: 757–765

    CAS  Google Scholar 

  • Larsen BR, Brussol C, Kotzias D, Veltkamp T, Zwaagstra O and Slanina J (1998) Sample preparation for radiocarbon (14C) measurements of carbonyl compounds in the atmosphere: quantifying the biogenic contribution. Atmos Environ 32: 1485–1492

    Article  CAS  Google Scholar 

  • Lawrence JE and Koutrakis P (1994) Measurement of atmospheric formic and acetic acids: methods evaluation and results from field studies. Environ Sci Technol 28: 957–964

    Article  PubMed  CAS  Google Scholar 

  • Lee YN, Zhou X and Hallock K (1995) Atmospheric carbonyl compounds at a rural southeastern United state site. J Geophys Res 100: 25933–25944

    Article  Google Scholar 

  • Lipari F, Dasch M and Scruggs WF (1984) 2,4-Dinitrophenylhydrazin-coated florisil sampling cartridges for the determination of formaldehyde in air. Environ Sci Technol 19: 70–74

    Google Scholar 

  • Lowe DC, Schmidt U, Ehhalt DH, Frischlorn CGB and Nurnberg HW (1981) Determination of formaldehyde in clean air. Environ Sci Technol 15: 819–823

    Article  CAS  Google Scholar 

  • Lunde G, Gether J, Gjos N and Stobet-Lande MB (1977) Organic micro-pollutants in precipitation in Norway. Atmos Environ 11: 1007–1014

    Article  CAS  Google Scholar 

  • Martin RS, Westberg H, Allwine E, Asman L, Fanner JC and Lamb B (1991) Measurements of isoprene and its atmospheric oxidation products in central Pennsylvania deciduous forest. J Atmos Chem 13: 1–32

    Article  CAS  Google Scholar 

  • Monk LS, Brändle R and Crawford RMM (1987) Catalase activity and post-anoxic injury on monocotyledonous species. J Exp Bot 38: 233–246

    Article  CAS  Google Scholar 

  • Morikami T, Tanaka S, Hashimoto Y, Inomata T and Hanaoka Y (1991) An automatic system for the measurement of carboxylic acids (HCOOH, CH3COOH) in the urban atmosphere by combination of an aqueous mist chamber and ion exclusion chromatograpy. Anal Sci 7: 1033–1036

    Article  CAS  Google Scholar 

  • Mosello R and Tartari GA (1992) Formate and acetate in wet deposition at Pallanza (NW Italy) in relation to major ion concentrations. Water Air Soil Poll 63: 397–409

    Article  CAS  Google Scholar 

  • Munger JW, Jacob DJ, Daube BC and Horowitz LW (1995) Formaldehyde, glyoxal and methylglyoxal in air and cloudwater at a rural mountain site in central Virginia. J Geophys Res 100: 9325–9333

    Article  CAS  Google Scholar 

  • Neitzert V and Seiler W (1981) Measurements of formaldehyde in clean air. J Geophys Res 8: 79–82

    CAS  Google Scholar 

  • Nemecek-Marshall M, MacDonald RC, Franzen JJ, Wojciechowski CL and Fall R (1995) Methanol emission from leaves. Plant Physiol 108: 1359–1368

    PubMed  CAS  Google Scholar 

  • Norton RB (1992) Measurements of gas phase formic and acetic acids at the Mauna Loa, Observatory, Hawaii during the Mauna Loa observatory photochemsitry experiment 1988. J Geophys Res 97: 10389–10393

    Article  CAS  Google Scholar 

  • Norton RB, Roberts JM and Huebert BJ (1983) Tropospheric oxalate. Geophys Res Lett 10: 517–520

    Article  CAS  Google Scholar 

  • Owen S, Boissard C, Street RA, Duckham C, Csiky O and Hewitt CN (1997) Screening of 18 Mediterranean plant species for volatile organic compound emissions. Atmos Environ 31: 101–118

    Article  CAS  Google Scholar 

  • Pfister-Sieber M and Brändle R (1994) Aspects of plant behavior under anoxia and post-anoxia. P Roy Soc Edinb B 102: 313–324

    Google Scholar 

  • Platt U and Perner D (1980) Direct measurements of atmospheric CH2O, HNO2, 03, NO2, and SO2 by differential optical absorption in the near UV. J Geophys Res 85: 7453–7458

    Article  CAS  Google Scholar 

  • Possanzini M, Di Palo V, Petricca M, Fratarcangeli R and Brocco D (1996) Measurements of lower carbonyls in Rome ambient air. Atmos Environ 30: 3757–3764

    Article  CAS  Google Scholar 

  • Puxbaum H, Rosenberg C, Gregori M, Lanzerstorfer C, Ober E and Winiwarter W (1988) Atmospheric concentrations of formic and acetic acid and related compounds in eastern and northern Austria. Atmos Environ 22: 2841–2850

    Article  CAS  Google Scholar 

  • Salas LJ and Singh HB (1986) Measurements of formaldehyde and acetaldehyde in the urban ambient air. Atmos Environ 20: 1301–1304

    Article  CAS  Google Scholar 

  • Sanhueza E, Santana M and Hermoso M (1992) Gas and aqueous-phase formic and acetic acids at a tropical cloud forest site. Atmos Environ 26: 1421–1426

    Article  Google Scholar 

  • Satsumabayashi H, Kurita H, Chang Y-S, Carmichael GR and Ueda H (1995) Photochemical formations of lower aldehydes and lower fatty acids under long-range transport in Central Japan. Atmos Environ 29: 255–266

    Article  CAS  Google Scholar 

  • Schönherr J and Riederer M (1989) Foliar penetration and accumulation of organic chemicals in plant cuticles. Rev Environ Contam T 108: 1–70

    Article  Google Scholar 

  • Schubert B, Schmidt U and Ehhalt DH (1984) Sampling and analysis of acetaldehyde in tropospheric air. In: Versino B and Angeletti G (eds) Physica-chemical behaviour of atmospheric pollutants, Proceedings of Bur. Symposium, Varese, Italy, pp 44–52. Reidel Publishers, Dordrecht, The Netherlands

    Chapter  Google Scholar 

  • Shepson PB, Hastie DR, Polizzi M, Bottenheim JW, Anlauf K, Mackay GI and Karecki DR (1991) Atmospheric concentrations and temporal variations of C1–C3 carbonylic compounds at two rural sites in Central Ontario. Atmos Environ 25: 2001–2015

    Article  Google Scholar 

  • Slemr J (1992) Development of techniques for the determination of major carbonyl compounds in clean air. In: EUROTRAC Annual Report of 1991, Part 9, 110–113

    Google Scholar 

  • Slemr J, Junkermann W and Volz-Thomas A (1996) Temporal variations in formaldehyde, acetaldehyde and acetone and budget of formaldehyde at a rural site in southern Germany. Atmos Environ 30: 3667–3676

    Article  CAS  Google Scholar 

  • Solberg SN, Schmidbauer N, Pedersen U and Schaug J (1993) VOC measurements August 1992-June 1993. EMEP/CCC-Report 6/93, NILU, Lillestrom.

    Google Scholar 

  • Steinbrecher R, Hahn J, Stahl K, Eichstädter G, Lederle K, Rabong R, Schreiner AM and Slemr J (1997) Investigations on emissions of low molecular weight compounds (C2–C10) from vegetation. In: Slanina S (ed) Biosphere-atmosphere exchange of pollutants and trace substances, pp 342–351. Springer Verlag, Berlin, Heidelberg, New York, U.S.A.

    Google Scholar 

  • Suzuki K, Itai R, Suzuki K, Nakashiani H, Nishizawa N-K, Yoshimura E and Mori S (1998) Formate dehydrogenase, an enzyme of anaerobic metabolism, is induced by iron deficiency in barley roots. Plant Physiol 116: 725–732

    Article  PubMed  CAS  Google Scholar 

  • Talbot RW, Andreae MO, Berresheim H, Jacob DJ and Beecher KM (1990) Sources and sinks of formic, acetic and pyruvic acids over Central Amazonia. 2. Wet season. J Geophys Res 95: 16799–16811

    Google Scholar 

  • Talbot RW, Beecher K, Harriss RC and Cofer WR (1988) Atmospheric geochemistry of formic and acetic acid at a mid-latidue temperate site. J Geophys Res 93: 1638–1652

    Article  CAS  Google Scholar 

  • Talbot RW, Mosher BW, Heikes BG, Jacob DJ, Munger JW, Daube BC, Keene WC, Maben JR and Artz RS (1995) Carboxylic acids in the rural continental atmosphere over the eastern United States during the Shenandoah cloud and photochemistry experiment. J Geophys Res 100: 9335–9343

    Article  CAS  Google Scholar 

  • Tokos JJS, Tanaka S, Morikami T, Shigetani H and Hoshimoto Y (1992) Gaseous formic and acetic acids in the atmopshere of Yokohama. Jpn J Atmos Chem 14: 85–94

    Article  Google Scholar 

  • Tuazon EC, Winer AM and Pitts JN (1981) Trace pollutant concentrations in a multiday smog episode in the California south coast air basin by long path length Transform Infrared süpectroscopy. Environ Sci Technol 15: 1232–1237

    Article  PubMed  CAS  Google Scholar 

  • Willey JD and Wilson CA(1993) Formic and acetic acids in atmospheric condensate in Wilmington, North Carolina. J Atmos Chem 16: 123–133

    Google Scholar 

  • Yokouchi Y, Mukai H, Nakajima K and Ambe Y (1990) Semi-volatile aldehydes as predominant organic gases in remote areas. Atmos Environ 24A: 439–442

    Article  Google Scholar 

  • Zuckerman H, Harren FJM, Reuss J and Parker DH (1997) Dynamics of acetaldehyde production during anoxia and post-anoxia in red bell pepper studied by photoacoustic techniques. Plant Physiol 113: 925–932

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kreuzwieser, J. (2002). Aldehydes and organic acids. In: Gasche, R., Papen, H., Rennenberg, H. (eds) Trace Gas Exchange in Forest Ecosystems. Tree Physiology, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9856-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9856-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6214-7

  • Online ISBN: 978-94-015-9856-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics