Skip to main content

Systems between First-Order and Second-Order Logics

  • Chapter
Book cover Handbook of Philosophical Logic

Part of the book series: Handbook of Philosophical Logic ((HALO,volume 1))

Abstract

The most common logical system taught, used, and studied today is Elementary predicate logic, otherwise known as first-order logic (see Hodges’ chapter in this Volume). First-order logic has a well-studied proof theory and model theory, and it enjoys a number of interesting properties. There is a recursively-enumerable deductive system D2 such that any first-order sentence Φ is a consequence of a set Γ of first-order sentences if and only if Φ is deducible from Γ in D1. Thus, first-order logic is (strongly) complete. It follows that first-order logic is compact in the sense that if every finite subset of a set Γ of first-order sentences is satisfiable then Γ itself is satisfiable. The downward Löwenheim-Skolem theorem is that if a set Γ of first-order sentences is satisfiable, then it has a model whose domain is countable (or the cardinality of G, whichever is larger). The upward Löwenheim-Skolem theorem is that if a set Γ of first-order sentences has, for each natural number n, a model whose domain has at least n elements, then for any infinite cardinal κ, Γ has a model whose domain is of size at least κ (see Hodges’ chapter, and virtually any textbook in mathematical logic, such as Boolos and Jeffrey [1989] or Mendelson [1987]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. J. Barwise. On branching quantifiers in English, Journal of Philosophical Logic, 8, 47–80, 1979.

    Article  Google Scholar 

  2. J. Barwise. Model-theoretic logics: background and aims. In Model-Theoretic Logics, J. Barwise and S. Feferman, eds. pp. 3–23. Springer Verlag, New York, 1985.

    Google Scholar 

  3. J. Barwise and S. Feferman, eds. Model-Theoretic Logics, Springer-Verlag, New York, 1985.

    Google Scholar 

  4. J. Bell and A. Slomson. Models and Ultraproducts: An Introduction. North Holland Publishing Company Amsterdam, 1971.

    Google Scholar 

  5. G. Boolos. To be is to be a value of a variable (or to be some values of some variables). Journal of Philosophy, 81, 430–449, 1984.

    Article  Google Scholar 

  6. G. Boolos. Nominalist platonism. The Philosophical Review, 94, 327–344, 1985.

    Article  Google Scholar 

  7. G. Boolos. Reading the Begriffsschrift. Mind, 94, 331–344, 1985.

    Article  Google Scholar 

  8. G. Boolos and R. Jeffrey. Computability and Logic, third edition. Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  9. C. Chang. A note on the two cardinal problem. Proceedings of the American Mathematical Society, 16, 1148–1155, 1965.

    Article  Google Scholar 

  10. C. Chang and H. J. Keisler. Model Theory. North Holland Publishing Company, Amsterdam, 1973.

    Google Scholar 

  11. A. Church. Introduction to Mathematical Logic. Princeton University Press, Princeton, 1973.

    Google Scholar 

  12. J. Corcoran. Categoricity. History and Philosophy of Logic, 1, 187–207, 1980.

    Article  Google Scholar 

  13. J. Cowles. The relative expressive power of some logics extending first-order logic. Journal of Symbolic Logic, 44, 129–146, 1979.

    Article  Google Scholar 

  14. R. Dedekind. Was sind und was sollen die Zahlen?, Vieweg, Brunswick, 1888; tr. as The nature and meaning of numbers. In Essays on the Theory of Numbers, W. W. Beman, ed. pp. 31–115, Dover Press, New York, 1963.

    Google Scholar 

  15. M. A. Dickmann. Larger infinitary languages. In Model-Theoretic Logics, J. Barwise and S. Feferman, eds. pp. 317–363. Springer Verlag, New York, 1985.

    Google Scholar 

  16. B. Dreben and W. Goldfarb. The Decision Problem: Solvable Classes of Quantificational Formulas. Addison-Wesley Publishing Company, Inc., London, 1979.

    Google Scholar 

  17. J. M. Dunn and N. Belnap. The sugstitution interpretation of the quantifier. Nous, 2, 177–185, 1968.

    Article  Google Scholar 

  18. H. D. Ebbinghaus. Extended logics: The general framework. In Model-Theoretic Logics, J. Barwise and S. Feferman, eds. pp. 25–76. Springer Verlag, New York, 1985.

    Google Scholar 

  19. R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. SIAM-AMS Proceedings, 7, 43–73, 1974.

    Google Scholar 

  20. S. Feferman. Theories of finite type related to mathematical practice. In Handbook of Mathematical Logic, J. Barwise, ed. pp. 913–971. North Holland, Amsterdam, 1977.

    Chapter  Google Scholar 

  21. H. Field. Deflationist views of meaning and content. Mind, 103, 249–285, 1994.

    Article  Google Scholar 

  22. J. Flum. Characterizing logics. In Model-Theoretic Logics, J. Barwise and S. Feferman, eds. pp. 77–120. Springer Verlag, New York, 1985.

    Google Scholar 

  23. G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Louis Nebert, Halle, 1879. In From Frege to Gödel, J. van Heijenoort, ed. pp. 1–82. Harvard University Press, Cambridge, Massachusetts, 1967.

    Google Scholar 

  24. D. Gabbay and J. Moravcsik. Branching quantifiers, English, and Montague grammar. Theoretical Linguistics, 1, 141–157, 1974.

    Article  Google Scholar 

  25. R. Gandy. The confluence of ideas in 1936. In The Universal Turing Machine, R. Herken ed. pp. 55–111. Oxford University Press, New York, 1988.

    Google Scholar 

  26. D. Gottlieb. Ontological Economy: Substitutional Quantification and Mathematics. Oxford University Press Oxford, 1980.

    Google Scholar 

  27. Y. Gurevich. Monadic second-order theories. In Model-Theoretic Logics, J. Barwise and S. Feferman, eds. pp. 479–506. Springer Verlag, New York, 1985.

    Google Scholar 

  28. Y. Gurevich. Logic and the challenge of computer science. In Trends in Theoretical Computer Science, Egon Börger, ed. pp. 1–57, Computer Science Press, Maryland, 1988.

    Google Scholar 

  29. Y. Gurevich and S. Shelah. Interpreting second-order logic in the monadic theory of order. Journal of Symbolic Logic, 48, pp. 816–828, 1983.

    Article  Google Scholar 

  30. L. Henkin. Banishing the rule of substitution for functional variables. Journal of Symbolic Logic, 18, 201–208, 1953.

    Article  Google Scholar 

  31. D. Hilbert. Über ber das Unendliche. Mathematische Annalen, 95, 16–190, 1925. tr. as “On the infinite”, in From Frege to Gödel, J. van Heijenoort, ed. pp. 369–392. Harvard University Press, Cambridge, Massachusetts, 1967.

    Google Scholar 

  32. J. Hintikka. Partially ordered quantifiers vs. partially ordered ideas. Diabetica. 30, 89–99, 1976.

    Google Scholar 

  33. N. Immerman. Languages that capture complexity classes. SIAM Journal of Computing, 16, 760–778, 1987.

    Article  Google Scholar 

  34. I. Jané. A critical appraisal of second-order logic. History and Philosophy of Logic, 14, 67–86, 1993.

    Article  Google Scholar 

  35. R. B. Jensen. The fine structure of the constructible hierarchy. Annals of Mathematical Logic, 4, 229–308, 1972.

    Article  Google Scholar 

  36. M. Kaufmann. The quantifier ‘there exist uncountably many’ and some of its relatives. In Model-Theoretic Logics, J. Barwise and S. Feferman, eds. pp. 123–176. Springer Verlag, New York, 1985.

    Google Scholar 

  37. P. Kolaitis. Game quantification. In Model-Theoretic Logics, J. Barwise and S. Feferman, eds. pp. 365–421. Springer Verlag, New York, 1985.

    Google Scholar 

  38. M. Krynicki and M. Mostowski. Henkin quantifiers. In Quantifiers: Logics, Models and Computation 1, M. Krynicki, M. Mostowski and L. Szczerba, eds. Kluwer Academic Publishers, Dordrecht, Holland, 1995.

    Google Scholar 

  39. F. Landman. Groups. Linguistics and Philosophy, 12, 559–605, 723–744, 1989.

    Article  Google Scholar 

  40. S. Lavine. Understanding the Infinite. Harvard University Press, Cambridge, Massachusetts, 1994.

    Google Scholar 

  41. H. Leblanc. Truth-value Semantics, North Holland Publishing Company, Amsterdam, 1976.

    Google Scholar 

  42. D. Leivant. Descriptive characterizations of computational complexity. Journal of Computer and System Sciences, 39, 51–83, 1989.

    Article  Google Scholar 

  43. D. Lewis. Parts of Classes. Blackwell, Oxford, 1991.

    Google Scholar 

  44. P. Lindström. On extensions of elementary logic. Theoria, 35, 1–11, 1969.

    Article  Google Scholar 

  45. L. Löwenheim. Über Möglichkeiten im Relativkalkül. Mathematische Annalen, 76, 447–479, 1915. tr. in From Frege to Gödel, J. van Heijenoort, ed. pp. 228–251. Harvard University Press, Cambridge, Massachusetts, 1967.

    Article  Google Scholar 

  46. E. Mendelson. Introduction to Mathematical Logic, third edition. van Nostrand, Princeton, 1987.

    Book  Google Scholar 

  47. D. Mundici. Other quantifiers: an overview. In Model-Theoretic Logics, J. Barwise and S. Feferman, eds. pp. 211–233. Springer Verlag, New York, 1985.

    Google Scholar 

  48. M. Nadel. ℒω 1 ω and admissible fragments. In Model-Theoretic Logics, J. Barwise and S. Feferman, eds. pp. 271–316. Springer Verlag, New York, 1985.

    Google Scholar 

  49. W. V. O. Quine. From a Logical Point of View. Harper and Row, New York, 1953.

    Google Scholar 

  50. W. V. O. Quine. Philosophy of Logic, second edition. Prentice-Hall, Engle-wood Cliffs, New Jersey, 1986.

    Google Scholar 

  51. M. Rabin. Decidability of second-order theories and automata on infinite trees. Transactions of the American Mathematical Society, 141, 1–35, 1969.

    Google Scholar 

  52. M. Resnik. Second-order logic still wild. Journal of Philosophy, 85, 75–87, 1988.

    Article  Google Scholar 

  53. J. H. Schmerl. Transfer theorems and their applications to logics. In Model-Theoretic Logics, J. Barwise and S. Feferman, eds. pp. 177–209. Springer Verlag, New York, 1985.

    Google Scholar 

  54. S. Shapiro. Foundations Without Foundationalism: A Case for Second-order Logic. Oxford University Press, Oxford, 1991.

    Google Scholar 

  55. S. Shelah. The monadic theory of order. Annals of Mathematics, 102, 379–419, 1975.

    Article  Google Scholar 

  56. G. Sher. The Bounds of Logic. The MIT Press, Cambridge, Massachusetts, 1991.

    Google Scholar 

  57. S. Simpson. Friedman’s research on subsystems of second order arithmetic. In Harvey Friedman’s Research on the Foundations of Mathematics, L. A. Harrington et al. (eds.). North Holland Publishing Company, Amsterdam, 1985.

    Google Scholar 

  58. T. Skolem. Begrundung der elementaren Arithmetik durch die rekurrierende Denkweise. Videnskapsselskapets skrifter I. Matematisk-naturvidenskabelig klasse, no. 6. tr. as ‘The foundations of arithmetic established by the recursive mode of thought’ in In From Frege to Gödel, J. van Heijenoort, ed. pp. 303–333. Harvard University Press, Cambridge, Massachusetts, 1967.

    Google Scholar 

  59. A. Tarski. On the concept of logical consequence. In Logic, Semantics and Metamathematics, A. Tarski, pp. 417–429. Clarendon Press, Oxford, 1956.

    Google Scholar 

  60. A. Tarski. What are logical notions? (ed by John Corcoran). History and Philosophy of Logic, 7, 143–154, 1986.

    Article  Google Scholar 

  61. J. Väänänen. Set-theoretic definability of logics. In Model-Theoretic Logics, J. Barwise and S. Feferman, eds. pp. 599–643. Springer Verlag, New York, 1985.

    Google Scholar 

  62. J. Van Heijenoort, ed. From Frege to Gödel. Harvard University Press, Cambridge, Massachusetts, 1967.

    Google Scholar 

  63. S. Wagner. The rationalist conception of logic. Notre Dame Journal of Formal Logic, 28, 3–35, 1987.

    Article  Google Scholar 

  64. E. Zermelo. Über stufen der Qualifikation und die Logik des Unendlichen. Jahresbericht Deutsche Mathematische Verein, 31, 85–88, 1931.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shapiro, S. (2001). Systems between First-Order and Second-Order Logics. In: Gabbay, D.M., Guenthner, F. (eds) Handbook of Philosophical Logic. Handbook of Philosophical Logic, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9833-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9833-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5717-4

  • Online ISBN: 978-94-015-9833-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics