Skip to main content

Effects of Atmospheric CO2 on Growth and Branchiness of Different Poplar (Populus) Genotypes in the Popface Experiment

  • Chapter
Trends in European Forest Tree Physiology Research

Part of the book series: Tree Physiology ((TREE,volume 2))

Abstract

A FACE facility has been installed in a high density poplar plantation to investigate the effects of increasing atmospheric CO2 on three different Populus genotypes. First-year height growth was stimulated significantly and a faster growth rate was observed in the beginning of the growing season. At the end of the first season, stem volume index was significantly larger in the FACE treatment and an increased number of sylleptic branches was observed. Leaf nitrogen concentration remained unchanged or increased under elevated CO2. Significant genotype differences in the response to elevated CO2 were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Beaton, A., Thompson, D. and Webber, J. (1991) British poplar-a 21st century challenge. For. Br. Timber, august, 19–21.

    Google Scholar 

  • Bosac, C., Gardner, S. D. L., Taylor, G. and Wilkins, D. (1995) Elevated CO2 and hybrid poplar: a detailed investigation of root and shoot growth and physiology of P. euramericana `Primo’. Forest Ecology and Management, 74, 103–116.

    Article  Google Scholar 

  • Bowes, G. (1996) Photosynthetic responses to changing atmospheric carbon dioxide concentration. In: Advances in Photosynthesis. Photosynthesis and the Environment, vol. 5 (ed. N. R. Baker ). Kluwer Academic Publishers, the Netherlands.

    Google Scholar 

  • Centritto, M., Lee, H. S. J. and Jarvis, P. G. (1999a) Increased growth in elevated [CO2]: an early, short-term response? Global Change Biology, 5, 623–633.

    Article  Google Scholar 

  • Centritto, M., Lee, H. S. J. and Jarvis, P. G. (1999b) Long-term effects of elevated carbon dioxide concentration and provenance on four clones of Sitka spruce (Picea sitchensis). I. Plant growth, allocation and ontogeny. Tree Physiology, 19, 799–806.

    Article  PubMed  Google Scholar 

  • Ceulemans, R., Impens, I., Mau, F., van Hecke, P. and Chen, S. G. (1992) Dry mass production and solar radiation conversion efficiency of poplar clones. In: Biomass for Energy, Industry and Environment: 6th E.C. Conference (ed. G. Grassi, A. Collina and H. Zibetta ), pp. 157–163. Elsevier, London.

    Google Scholar 

  • Ceulemans, R., Jiang, X. N. and Shao, B. Y. (1995) Effects of elevated atmospheric CO2 on growth, biomass production and nitrogen allocation of two Populus clones. Journal of Biogeography, 22, 261–268.

    Article  Google Scholar 

  • Ceulemans, R. and Mousseau, M. (1994) Tansley Review No. 71. Effects of elevated atmospheric CO on woody plants. New Phytologist, 127, 425–446.

    Article  Google Scholar 

  • Ceulemans, R., Shao, B. Y., Jiang, X. N. and Kalina, J. (1996) First-and second-year aboveground growth and productivity of two Populus hybrids grown at ambient and elevated CO2. Tree Physiology, 16, 61–68.

    Article  PubMed  Google Scholar 

  • Cotrufo, M. F., meson, P. and Scott, A. (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology, 4, 43–54.

    Article  Google Scholar 

  • Curtis, P. S., Zak, D. R., Pregitzer, K. S. and Teeri, J. A. (1994) Above-and belowground response of Populus grandidentata to elevated atmospheric CO2 and soil N availability. Plant and Soil, 165, 45–51.

    Article  CAS  Google Scholar 

  • DeLucia, E. H., Hamilton, J. G., Naidu, S. L., Thomas, R. B., Andrews, J. A., Finzi, A., Lavine, M., Matamala, R., Mohan, J. E., Hendrey, G. R. and Schlesinger, W. H. (1999) Net primary production of a forest ecosystem with experimental CO2 enrichment. Science, 284, 1177–1179.

    Article  PubMed  CAS  Google Scholar 

  • Dickson, R. E., Lewin, K. F., Isebrands, J. G., Coleman, M. D., Heilman, W. E., Riemenschneider, D. E., Sober, J., Host, G. E., Hendrey, G. R., Pregitzer, K. S. and Karnosky, D. F. (2000). Forest atmosphere carbon transfer and storage (FACTS II)-The Aspen free-air CO2 and 03 enrichment (FACE) project: An overview: USDA Forest Service North Central Forest Experiment Station General Technical Report NC-214.

    Google Scholar 

  • Eamus, D. and Jarvis, P. G. (1989) The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests. Advances in Ecological Research, 19, 2–55.

    Article  Google Scholar 

  • Evans, G. C. (1972) Relative growth rate. In: The Quantitative Analysis of Plant Growth (ed. D. J. Anderson, P. Greigh-Smith and F. A. Pitelka ), pp. 246–254. Blackwell Scientific Publications, Oxford, U.K.

    Google Scholar 

  • FAO (1995) Forest products 1991–1995. FAO Forestry series No. 30, FAO statistic series No. 137, FAO, Rome, 57 pp.

    Google Scholar 

  • Galinski, W., Goosens, R., Ceulemans, R. and Impens, I. (1991) The wood productivity of two poplar clones (Populus trichocarpa x Populus deltoides) as affected by stocking and age. Biomass Bioenergy, 1, 233–239.

    Article  Google Scholar 

  • Gardner, S. D. L., Taylor, G. and Bosac, C. (1995) Leaf growth of hybrid poplar following exposure to elevated CO2. New Phytologist, 131, 81–90.

    Article  Google Scholar 

  • Hättenschwiler, S. and Körner, S. (1998) Biomass allocation and canopy development in spruce model ecosystems under elevated CO and increased N deposition. Oecologia, 113, 104–114.

    Article  Google Scholar 

  • Hendrey, G. R., Lewin, K. F. and Nagy, J. (1993) Free air carbon dioxide enrichment: development, progress, results. Vegetatio, 104 /105, 17–31.

    Article  Google Scholar 

  • Idso, S. B., Kimball, B. A. and Allen, S. G. (1991) CO2 enrichment of sour orange trees: 2.5 years into a long-term experiment. Plant, Cell and Environment, 14, 351–353.

    Article  Google Scholar 

  • Isebrands, J. G. and Nelson, N. D. (1983) Distribution of 14C-labeled photosynthates within intensively cultured Populus clones during the establishment year. Physiologia Plantarium, 59, 9–18.

    Article  CAS  Google Scholar 

  • Jach, M. E. and Ceulemans, R. (1997) Impact of elevated CO on physiology and needle morphology of Scots pine (Pinus sylvestris) seedlings. In: Impacts of Global Change on Tree Physiology and Forest Ecosystems (ed. G. M. J. Mohren, K. Kramer and S. Sabaté ), pp. 57–73. Kluwer Academic Publishers, Dordrect.

    Google Scholar 

  • Janous, D., Dvorak, V., Oplustilova, M. and Kalina, J. (1996) Chamber effects and responses of trees in the experiment using open top chambers. Journal of Plant Physiology, 148, 332–338.

    Article  CAS  Google Scholar 

  • Janssens, I. A., Mousseau, M. and Ceulemans, R. (2000) Crop ecosystem responses to global climate change: tree crops. In: Climate Change and Global Crop Productivity (ed. K. R. Reddy and H. F. Hodges ). CAB International, Wallingford, UK.

    Google Scholar 

  • Kalina, J. and Ceulemans, R. (1997) Clonal differences in the response of dark and light reactions of photosynthesis to elevated atmospheric CO2 in poplar. Photosynthetica, 33, 51–61.

    Article  CAS  Google Scholar 

  • Kirschbaum, M. U. F. and Fischlin, A. (1996) Climate change impacts on forests. In: Climate Change 1995 Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analysis (ed. R. T. Watson, M. C. Zinyowera and R. H. Ross ), pp. 99–125. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kvèt, J., Ondok, J. P., Necas, J. and Jarvis, P. J. (1971) Methods of growth analysis. In: Plant Photosynthetic Production (ed. Z. Sestak, Z. Catsky and P. J. Jarvis ), pp. 343–391. Dr. W. Junk N.V. Publishers, The Hague.

    Google Scholar 

  • Larson, P. R., Dickson, R. E. and Isebrands, J. G. (1976) Some physiological applications for intensive culture. In: Intensive plantation culture: five years research, pp. 10–18. USDA For. Serv. Gen. Tech. Rep. NC-21

    Google Scholar 

  • Lee, H. S. J., Overdieck, D. and Jarvis, P. G. (1998) Biomass; growth and carbon allocation. In: European Forests and Global Change: the Likely Impacts of Rising CO 2 and Temperature (ed. P. G. Jarvis ), pp. 126–191. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lewin, K. F., Hendrey, G. R., Nagy, J. and LaMorte, R. L. (1994) Design and application of a free-air carbon dioxide enrichment facility. Agricultural and Forest Meteorology, 70, 15–29. Mooney, H. A., Canadell, J., Chapin, F. S., Ehleringer, J., Körner, C., McMurtrie, R., Parton, W. J.

    Google Scholar 

  • Pitelka, L. and Schulze, E.-D. (1999) The terrestrial biosphere and global change: Ecosystem physiology responses to global change. In: Implications of Global Change for Natural and Managed Ecosystems: A Synthesis of GCTE and Related Research (ed. B. H. Walker, J. Canadell and J. S. I. Ingram ). Cambridge University Press, Cambridge.

    Google Scholar 

  • Mousseau, M. and Enoch, Z. H. (1989) Carbon dioxide enrichment reduces shoot growth in sweet chestnut seedlings (Castanea sativa Mill.). Plant, Cell and Environment, 12, 927–934.

    Article  Google Scholar 

  • Norby, R. J., Wullschleger, S. D., Gunderson, C. A., Johnson, D. W. and Ceulemans, R. (1999) Tree responses to rising CO2 in field experiments: implications for the future forest. Plant, Cell and Environment, 22, 683–714.

    Article  CAS  Google Scholar 

  • Oechel, W. C. and Strain, B. R. (1985) Native species responses to increased atmospheric carbon dioxide concentration. In: Direct Effects of Increasing Carbon Dioxide on Vegetation (ed. B. R. Strain and J. D. Cure ), pp. 117–154. Department of Energy, Office of Basic Energy Sciences, Carbon Dioxide Research Division, Springfield, VA, Washington D.C.

    Google Scholar 

  • Pontailler, J. Y., Ceulemans, R., Guittet, J. and Mau, F. (1997) Linear and non-linear functions of volume index to estimate woody biomass in high density young poplar stands. Annual Science of Forestry, 54, 335–345.

    Article  Google Scholar 

  • Pregitzer, K. S., Zak, D. R., Curtis, P. S., Kubiske, M. E., Teeri, J. A. and Vogel, C. S. (1995) Atmospheric CO2, soil nitrogen and turnover of fine roots. New Phytologist,129, 579–585. Radoglou, K. M. and Jarvis, P. G. (1990) Effects of CO2 enrichment on four poplar clones. I. Growth and leaf anatomy. Annals of Botany,65, 617–626.

    Google Scholar 

  • Remphrey, W. R. and Powell, G. R. (1985) Crown architecture of Larix laricina saplings: sylleptic branching on the main stem. Canadian Journal of Botany, 63, 1296–1302.

    Article  Google Scholar 

  • Saxe, H., Ellsworth, D. S. and Heath, J. (1998) Tansley Review No. 98. Treé and forest functioning in an enriched CO2 atmosphere. New Phytologist, 139, 395–436.

    Article  Google Scholar 

  • Scarascia-Mugnozza, G. E., Ceulemans, R., Heilman, P. E., Isebrands, J. G., Stealer, R. F. and Hinckley, T. M. (1997) Production physiology and morphology of Populus species and their hybrids grown under short rotation. II. Biomass components and harvest index of hybrid and parental species clones. Canadian Journal of Forest Research, 27, 285–294.

    Article  Google Scholar 

  • Scarascia-Mugnozza, G., DeAngelis, P., Sabatti, M., Calfapietra, C., Ceulemans, R., Peressotti, A. and Miglietta, F. (2000) A FACE experiment on a short-rotation, intensive poplar plantation: objective and experimental set-up of POPFACE. In: Terrestrial Ecosystem Research in Europe: Successes, Challenges and Policy. Final Conference of the Terrestrial Ecosystem Research Initiative-Concerted Action (TERICA) (ed. M.A. Sutton, J.M. Moreno, W. van der Putten, and S. Struwe ), pp. 136–140. Ecosystem Research Report, European Commission, Luxembourg.

    Google Scholar 

  • Schimel, D., Alves, D., Enting, D., Heimann, M. and Joos, F. (1996) Radiative forcing of climate change. In: Climate Change 1995: the Science of Climate Change (ed. J. T. Houghton, L. G. M. Filho, B. A. Callander, N. Harris, A. Kattenberg and K. Maskell ), pp. 65–132. Cambridge University Press, Cambridge.

    Google Scholar 

  • Taylor, G. and Frost, D. L. (1992) Impact of gaseous air pollution on leaf growth of hybrid poplar. Forest Ecology and Management, 51, 151–162.

    Article  Google Scholar 

  • Ward, J. K. and Strain, B. R. (1999) Elevated CO, studies: past, present and future. Tree Physiology, 19, 211–220.

    Article  PubMed  Google Scholar 

  • Webber, A. N., Nie, G.-Y. and Long, S. P. (1994) Acclimation of photosynthetic proteins to rising atmospheric CO2. Photosynhtesis Research, 39, 413–425.

    Article  CAS  Google Scholar 

  • Wullschleger, S. D., Post, W. M. and King, A. W. (1995) On the potential for a CO2 fertilization effect in forests: estimates of the biotic growth factor based on 58 controlled-exposure studies. In: Biotic Feedbacks in the Global Climatic System (ed. G. M. Woodwell and F. T. Mackenzie ), pp. 85–107. Oxford University Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gielen, B., Calfapietra, C., Janssens, I.A., Scarascia-Mugnozza, G., Ceulemans, R. (2001). Effects of Atmospheric CO2 on Growth and Branchiness of Different Poplar (Populus) Genotypes in the Popface Experiment. In: Huttunen, S., Heikkilä, H., Bucher, J., Sundberg, B., Jarvis, P., Matyssek, R. (eds) Trends in European Forest Tree Physiology Research. Tree Physiology, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9803-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9803-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5829-4

  • Online ISBN: 978-94-015-9803-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics