Combined Use of Goal Programming and the Analytic Hierarchy Process in Forest Management

  • Luis Díaz-Balteiro
  • Carlos Romero
Part of the Managing Forest Ecosystems book series (MAFE, volume 3)


This paper presents an analytical framework for forest management taking into account the multiplicity of criteria and decision makers usually present when solving these kinds of decision-making problems. The procedure combines Goal Programming (GP) and the Analytic Hierarchy Process (AHP). In this way, the preferential weights incorporated into the GP model are derived from the application of the AHP method to a group of decision-makers. A key feature of the procedure lies in the ease-of-use and transparent utility interpretation of the solutions obtained. All the theoretical developments were applied to the “Dehesa de la Gar ganta” forest in the Segovia Mountains (“Sisterna Central”), with an area of 2112 hectares covered with Scots pine (Pinus sylvestris).

Key words

Decision support forest management goal programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ballestero JE. and Romero, C. 1994. Utility optimisation when the utility function is virtually unknown. Theory and Decision 36:233–243.CrossRefGoogle Scholar
  2. Barzdlai, J. 1998. On the decomposition of value functions. Operations Research Letters 22:159–170.CrossRefGoogle Scholar
  3. Barzilai, J. and Golany, B. 1994. AHP rank reversal, normalisation and aggregation rules. INFOR 32:57–64.Google Scholar
  4. Bengston, D. N. and Xu, Z. 1995. Changing national forest values: A content analysis. United States Department of Agriculture. North Central Forest Experiment Station, Research Paper NC-323.Google Scholar
  5. Bing, N. G. 1988. A simple algorithm of the dynamic priorities and an approach to Chinas forestry production structure for the future, in Proceedings of International Symposium on the Analytic Hierarchy Process, Tianjun University, China, 461–464.Google Scholar
  6. Diaz-Balteiro, L. 1995. Modelos de programación matemática para la ordenación de montes: desarrollos teóricos y aplicaciones al sector forestal espanol. Doctoral dis, Forestry School, Technical University of Madrid.Google Scholar
  7. Diaz-Balteiro, L. and Romero, C. 1997. Timber harvest scheduling problems: compromise programming and utility optimization models. Lecture Notes in Economics And Mathematical Systems 455:328–337.CrossRefGoogle Scholar
  8. Diaz-Balteiro, L. and Romero, C. 1998. Modeling timber harvest scheduling problems with multiple criteria: an application in Spain. Forest Science 44:37–46.Google Scholar
  9. Dyer J. S. 1990. Remarks on the analytic hierarchy process. Management Science 36: 249–258.CrossRefGoogle Scholar
  10. Field, D.B. 1973. Goal programming for forest management. Forest Science 19:125–135.Google Scholar
  11. Forman, E.H., Saaty, T.L., Selly, M.L. and Waldrow, R. 1985. EXPERT CHOICE, Decision Support Software Inc., Pittsburgh.Google Scholar
  12. Gass, S. I. 1986. A process for determining priorities weights for large-scale linear goal programmes. Journal of the Operational Research Society 37:779–785.Google Scholar
  13. Ignizio, J.P. 1976. Goal programming and extensions. Lexington Books, Massachusetts.Google Scholar
  14. Ignizio J.P. and Cavalier, T. M. 1994. Linear programming. Prentice-Hall, New Jersey.Google Scholar
  15. Johnson, K.N. and Scheurman, H.L. 1977. Techniques for prescribing optimal harvest and investment under different objectives. Discussion and synthesis. Forest Science Monographies 18.Google Scholar
  16. Kangas, J. and Pukkala, T. 1992. A decision theoretic approach applied to goal programming of forest management. Silva Fennica 26:169–176.Google Scholar
  17. Kangas, J. and Pukkala, T. 1996. Operationalization of biological diversity as a decision objective in tactical forest planning. Canadian Journal of Forest Research 26:103–111.CrossRefGoogle Scholar
  18. Liu, G. and Davis, L.S. 1995. Interactive resolution of multi-objective forest planning problems with shadow price and parametric analysis. Forest Science 41:452–469.Google Scholar
  19. Mendoza, G.A. and Sprouse, W. 1989. Forest planning decision making under fuzzy environments: an overview and illustration. Forest Science 35:481–502.Google Scholar
  20. Peterson, D.L., Silsbee, D.G. and Schmoldt, D.L. 1994. A case study of resources management planning with multiple objectives and projects. Environmental Management 18:729–742.CrossRefGoogle Scholar
  21. Prieto, A. and Löpez-Quero, M. 1993. Manual de ordenación de montes. Editorial Paraninfo, Madrid.Google Scholar
  22. Romero, C. 1991. Handbook of critical issues in goal programming. Pergamon, Oxford.Google Scholar
  23. Rustagi, K.P. and Bare, B.B. 1987. Resolving multiple goal conflicts with interactive goal programming. Canadian Journal of Forest Research 17:1401–1407.CrossRefGoogle Scholar
  24. Saaty, T.L. 1980. The analytic hierarchy process: planning, priority setting, and resource allocation. McGraw-Hill, New York.Google Scholar
  25. Saaty, T.L. 1994. How to make a decision: the analytic hierarchy process. Interfaces 24:19–43.CrossRefGoogle Scholar
  26. Tamiz, M., Jones, D. and Romero, C. 1998. Goal programming for decision making: An overview of the current state-of-the-art. European Journal of Operational Research 111:569–581.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Luis Díaz-Balteiro
    • 1
  • Carlos Romero
    • 2
  1. 1.Departamento de Ingeniería Agrícola y ForestalE.T.S. Ingenierías Agrarias. Avda. MadridPalenciaSpain
  2. 2.Departamento de Economía y Gestión ForestalE.T.S. Ingenieros de MontesSpain

Personalised recommendations