Skip to main content
  • 202 Accesses

Abstract

In the context of cohesive fracture mechanics, a non-associated elastic-plastic based cohesive law is considered in modeling quasi-brittle materials. The structural problem is stated by means of boundary integral equations. In the framework of the symmetric Galerkin formulation, the non associated nature of the cohesive law implies unsymmetry of the relevant boundary operator. To overcome such a drawback, the problem is transformed into an extended equivalent one governed by a symmetric integral operator. It is shown that the new problem admits of a min-max characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nooru-Mohamed, M.B. and van Mier, J.G.M., Fracture of concrete under Mixed Mode Loading, in Fracture of concrete and rock, recent development, S.P. Shah, S.E. Schwartz and B. Barr eds., Elsevier, Amsterdam, 458–467 (1989).

    Google Scholar 

  2. Guo, Z.K., Kobayashi, A.S. and Hawkins, N.M., Mixed Modes I and II Concrete Fracture: An experimental analysis, J. Appl. Mech., ASME, 61, 815–821 (1994).

    Article  Google Scholar 

  3. Amadei, B., Sture, S., Saeb, S. and Atkinson, R.H., An evaluation of masonry joint shear strength in existing buildings, report to NSF, Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, 1989.

    Google Scholar 

  4. Lotfi, H. and Shing, P., Interface model applied to fracture of masonry structures, J. Struct Engrg., ASCE, 120(1), 63–80 (1994).

    Article  Google Scholar 

  5. Carol, I., Prat, P.C. and Lopez, CM., Normal/shear cracking model: application to discrete crack analysis, J. Engrg. Mech., ASCE, 123(8), 1–9 (1997).

    Article  Google Scholar 

  6. Maugin, G.A., The thermomechanics of plasticity and fracture, Cambridge University Press, New York, 1992.

    Book  MATH  Google Scholar 

  7. Carini, A., De Donato, O., Fundamental solutions for linear vis-coelastic continua, Int. J. Solids Structures, 29, 2989–3009 (1992).

    Article  MATH  Google Scholar 

  8. Cruse, T.A., Boundary Element Analysis in Computational Fracture Mechanics, Kluwer Academic, Dordrecht, The Netherlands, 1988.

    Book  MATH  Google Scholar 

  9. Cen, Z., and Maier, G., Bifurcations and instabilities in fracture of cohesive-softening structures: a boundary element analysis, Fatigue Fract. Engng. Mater. Struct, 15, 911–928 (1992).

    Article  Google Scholar 

  10. Sirtori, S., Maier, G., Novati, G., and Miccoli, S., A Galerkin symmetric boundary-element method in elasticity: formulation and implementation, Int. J. Numer. Methods Eng., 35, 255–282 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  11. Maier, G., and Hueckel, T. Non associated and coupled flow rules of elastoplasticity for rock-like materials, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 16, 77–92,(1979)

    Google Scholar 

  12. Salvadori A. Quasi Brittle Fracture Mechanics by Cohesive Crack Models and Symmetric Galerkin Boundary Element Method, PhD Thesis, Politecnico di Milano, Milano, (1999)

    Google Scholar 

  13. Carini, A. and Genna, F., Variational formulations in the non-associated flow theory of plasticity, (submitted).

    Google Scholar 

  14. Comi, C. and Perego, U., A unified approach for variationally consistent finite elements in elastoplasticity, Comp. Meth. in Appl. Mech. and Engng., 121, 323–344 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  15. Pandolfi, A. and Carini, A., Some extremum properties of finite-step solutions in elastoplasticity, Int. J. Solids and Structures, 36, 185–218 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  16. Bramble, J.H. and Pasciak, J.E., A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Mathematics of Computation, 50, 1–17 (1988).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Carini, A., Salvadori, A. (2001). Implementation of a Symmetric Galerkin Boundary Element Method in Quasi-Brittle Fracture Mechanics. In: Burczynski, T. (eds) IUTAM/IACM/IABEM Symposium on Advanced Mathematical and Computational Mechanics Aspects of the Boundary Element Method. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9793-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9793-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5737-2

  • Online ISBN: 978-94-015-9793-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics