Skip to main content

Ultrasonic Guidance for Radiofrequency Ablation

  • Chapter
Progress in Catheter Ablation

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 241))

  • 117 Accesses

Abstract

Similar to transthoracic echocardiography, intracardiac echocardiography images cardiac structures with ultrasound waves. These sonic waves are emitted from an ultrasound crystal mounted onto the distal aspect of an intravascular catheter. The initial cardiac application was to evaluate intracoronary atherosclerotic lesions. Since tissue resolution varies inversely with the wavelength, and depth of penetration varies directly with wavelength, ideal imaging of the coronary endothelial surface requires high frequencies on the order of 30 mHz. For catheter ablation procedures, these ultrasound catheters were occasionally used to verify catheter tip-myocardial tissue contact.1 Modification of the intracoronary ultrasound catheters to deliver lower frequencies (9 mHz) provided greater depth of penetration and not only allowed verification of tissue contact, but also facilitated identification of specific cardiac structures important in the ablation of arrhythmias and ablation location.2–5 There are two commercially available ultrsound catheters. The first is a rotary driven transducer that images tangentially through a fluid filled catheter providing a 360° view around the catheter shaft that is angled at 15° consistent with the angle of the transducer (Figure 1). The second is a phased array system that mounts several transducers in an array on the shaft of a catheter, thus the image observed is pie shaped (Figure 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haines DE. Determinants of lesion size during radiofrequency catheter ablation: The role of electrode-tissue contact pressure and duration of energy delivery. J Cardiovasc Electrophysiol 1991;2:509–515.

    Article  Google Scholar 

  2. Chy E, Kaiman JM, Kwasman MA, et al. Intracardiac echocardiography during radiofrequency catheter ablation of cardiac arrhythmias in man. J Am Coll Cardiol 1994; 24:1351–1357.

    Article  Google Scholar 

  3. Chu E, Fitzpatrick AP, Chin MC, et al. Radiofrequency catheter ablation guided by intracardiac echocardiography. Circulation 1994; 89:1301–1305.

    Article  PubMed  CAS  Google Scholar 

  4. Kaiman JM, Lee RJ, Fisher WG, et al. Radiofrequency catheter modification of sinus pacemaker function guided by intracardiac echocardiography. Circulation 1995; 93:3070–3081

    Google Scholar 

  5. Kaiman JM, Olgin JE, Karch MR, and Lesh MD. Use of intracardiac Echocardiography in Interventional Electrophysiology. Pace 1997; 20(Pt. l):2248–2262.

    Article  Google Scholar 

  6. Daoud EG, Kalbfleisch SJ, and Hummel JD. Intracardiac Echocardiography to Guide Transseptal Left Heart Catheterization for Radiofrequency Catheter Ablation. J Cardiovasc Electrophysiol 1999; 10:358–363.

    Article  PubMed  CAS  Google Scholar 

  7. Zhou L, Keane D, Reed G, Ruskin J. Thromboembolic complications of cardiac radiofrequency catheter ablation: a review of the reported incidence, pathogenesis and current research directions. J Cardiovasc Electrophysiol 1999; 10(5):680–691

    Article  Google Scholar 

  8. Boineau JP, Schuessler RB, Hackel DB, et al. Widespread distribution and rate differentiation of the atrial pacemaker complex. Am J Physiol 1980; 239:H406–H415.

    Google Scholar 

  9. Lee RJ, Kaiman JM, Fitzpatrick AP, et al. Radiofrequency catheter modification of the sinus node for inappropriate sinus tachycardia. Circulation 1995; 93:2918–2919.

    Google Scholar 

  10. Callans DJ, Ren JF, Schwartzman D, Gottlieb CD, Chaudhry FA, and Marchlinski FE. Narrowing of the superior vena cava-right atrium junction during radiofrequency catheter ablation for inappropriate sinus tachycardia: Analysis with intracaradiac echocardiography. J Am Coll Cardiol 1999; 6:1667–1670.

    Article  Google Scholar 

  11. Boineau JP, Schuessler RB, Roeske WR, et al. Quantitative relation between sites of atrial impulse origin and cycle length. Am J Physiol 1983; 245:H781–H789.

    Google Scholar 

  12. Haines DE, DiMarco JP. Sustained intraatrial reentrant tachycardia: Clinical, electrocardiographic and electrophysiologic characteristics and long-term follow-up. J Am Coll Cardiol 1990; 15:1345–1354.

    Article  PubMed  CAS  Google Scholar 

  13. Chen SA, Chiang CE, Yang CJ, et al. Sustained atrial tachycardia in adult patients. Electrophysiological characteristics, pharmalogical response, possible mechanisms and effects of radiofrequency ablation. Circulation 1994; 90:1262–1278.

    Article  PubMed  CAS  Google Scholar 

  14. Lesh MD, Van Hare GF, Epstein LM, et al. Radiofrequency catheter ablation of atrial arrhythmias-Results and mechanisms. Circulation 1994; 89:1074–1089.

    Article  PubMed  CAS  Google Scholar 

  15. Tracy CM, Swartz JF, Fletcher RD. Radiofrequency catheter ablation of ectopic atrial tachycardia using paced activation sequence mapping. J Am Coll Cardiol 1993; 21:910–917.

    Article  PubMed  CAS  Google Scholar 

  16. Kay GN, Chong F, Epstein AE, et al. Radiofrequency ablation for treatment of primary atrial tachycardias. J Am Coll Cardiol 1993; 21:901–909.

    Article  PubMed  CAS  Google Scholar 

  17. Walsh EP, Saul JP, Hulse JE. Transcatheter ablation of ectopic atrial tachycardia in young patients using radio frequency current. Circulation 1992; 86:1138–1146.

    Article  PubMed  CAS  Google Scholar 

  18. Poty H, Saoudi N, Haissagguerre M, et al. Radiofrequency catheter ablation of atrial tachycardias. Am Heart J 1996; 131:481–489.

    Article  PubMed  CAS  Google Scholar 

  19. Shenasa H, Merrill JJ, Hamer ME, et al. Distribution of ectopic atrial tachycardias along the crista terminalis: An atrial ring of fire? (abstract) Circulation 1993; 88:1–29.

    Google Scholar 

  20. Weiss C, Hatala R, Carpinteiro L, et al. Topographic anatomy and in vitro fluoroscopic imaging of the crista terminalis: An attempt to more precisely localize the origin of ectopic atrial tachycardia, (abstract) Circulation 1994; 1–595.

    Google Scholar 

  21. Tang CW, Scheinman MM, Van Hare GF, et al. P-wave morphology during automatic atrial tachycardia in man. J Am Coll Cardiol 1995; 26:1315–1324.

    Article  PubMed  CAS  Google Scholar 

  22. Haissaguerre M, Jais P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 1998; 339:659–666.

    Article  PubMed  CAS  Google Scholar 

  23. Chen SA, Hsieh MH, Tai CT, et al. Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins. Circulation 1999; 100:1879–1886.

    Article  PubMed  CAS  Google Scholar 

  24. Jais P, Shah DC, Hocini M, Yamane T, Haissaguerre M, Clementy J. Radiofrequency Catheter Ablation for Atrial Fibrillation. J. Cardiovasc Electrophysiol, 2000; 11: 758–761

    Article  PubMed  CAS  Google Scholar 

  25. Roithinger FX, Steiner PR, Goseki Y, et al. Low-power radiofrequency application and intracardiac echocardiography for creation of continuous left atrial linear lesions. J Cardiovasc Electrophysiol 1999; 10(5): 680–691.

    Article  PubMed  CAS  Google Scholar 

  26. Feld GK, Fleck RP, Chen PS, et al. Radiofrequency catheter ablation for the treatment of human type 1 atrial flutter. Identification of a critical zone in the reentrant circuit by endocardial mapping techniques. Circulation 1992; 86:1233–1240.

    Article  PubMed  CAS  Google Scholar 

  27. Cosio FG, Goicolea A, Lopez-Gil M, et al. Catheter ablation of atrial flutter circuits. PACE 1993; 16:637–642.

    Article  PubMed  CAS  Google Scholar 

  28. Epstein LM, Mitchell MA, Smith TW, Haines DE. Comparative study of fluoroscopy and intracardiac echocardiographic guidance for the creation of linear atrial lesions. Circulation 1998; 17:1796–1801.

    Article  Google Scholar 

  29. Kay GN, Epstein AE, Dailey SM, et al. Selective radiofrequency ablation of the slow pathway for the treatment of atrioventricular nodal reentrant tachycardia. Evidence for involvement of perinodal myocardium within the reentrant circuit. Circulation 1992; 85:1675–1688.

    Article  PubMed  CAS  Google Scholar 

  30. Fisher WG, Pelini MA, Bacon ME. Adjunctive Intracardiac Echocardiography to Guide Slow Pathway Ablation in Human Atrioventricular Nodal Reentrant Tachycardia: Anatomic Insights. Circulation 1997; 96:3021–3029.

    Article  PubMed  CAS  Google Scholar 

  31. Callans DJ, Ren JF, Michele J, Marchlinski FE, Dillon SM. Electroanatomic left ventricular mapping in the porcine model of healed anterior myocardial infarction. Correlation with intracardiac echocardiography and pathological analysis. Circulation 1999; 100(16): 1744–1750.

    Article  PubMed  CAS  Google Scholar 

  32. Allan JJ, Smith RS, DeJong SC, McKay CR, Kerber RE. Intracardiac echocardiographic imaging of the left ventricle from the right ventricle: quantitative experimental evaluation. J Am Soc Echocardiogr 1998; 11(10):921–928.

    Article  PubMed  CAS  Google Scholar 

  33. Schumacher B, Jung W., Schmidt H, Fischenbeck C, et al. Transverse conduction capabilities of the crista terminalis in patients with atrial flutter and atrial fibrillation. J Am Coll Cardiol 1999;34(2):363–373.

    Article  PubMed  CAS  Google Scholar 

  34. Tardif JC, Groeneveld PW, Wang PJ, Haugh CJ, et al. Intracardiac echocardiographic guidance during microwave catheter ablation. J Am Soc Echocardiogr 1999; 12(l):41–47.

    PubMed  CAS  Google Scholar 

  35. Keane DK, Houghtaling C, Qin H, Aretz T, Ruskin JN. Linear Cryo Ablation of the Cavo Tricuspid Isthmus Under Guidance by Phased Array Intracardiac Echocardiography. (Abstract) Journal of the American College of Cardiology 2000; 35(2); 126A

    Google Scholar 

  36. Chugh SS, Chan RC, Johnson SB, Packer DL. Catheter tip orientation affects radiofrequency ablation lesion size in the canine left ventricle. Pacing Clin Electrophysiol 1999; 22(3):413–420.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hummel, J.D. (2001). Ultrasonic Guidance for Radiofrequency Ablation. In: Liem, L.B., Downar, E. (eds) Progress in Catheter Ablation. Developments in Cardiovascular Medicine, vol 241. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9791-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9791-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5882-9

  • Online ISBN: 978-94-015-9791-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics