Skip to main content

Transcatheter Microwave Ablation

  • Chapter
Progress in Catheter Ablation

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 241))

  • 114 Accesses

Abstract

Microwave energy was considered an attractive alternative source for tissue heating because it involves a fundamentally different process from radiofrequency energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Christensen DA and Durney CH. Hyperthermia production for cancer therapy: a review of fundamentals and methods. J Microw Power, 1981; 16(2):89–105.

    PubMed  CAS  Google Scholar 

  2. Durney C and Christensen D, Hyperthermia for cancer therapy, in Biological Effects and Medical Applications of Electromagnetic Energy, O. Gandhi, Editor. 1990, Prentice Hall: Englewood Cliffs, NJ. p. 439–477.

    Google Scholar 

  3. Bolmsjo M, Sturesson C, Wagrell L, et al. Optimizing transurethral microwave thermotherapy: a model for studying power, blood flow, temperature variations and tissue destruction [see comments]. Br J Urol, 1998;81(6):811–816.

    Article  PubMed  CAS  Google Scholar 

  4. Cooper KG, Bain C, and Parkin DE. Comparison of microwave endometrial ablation and transcervical resection of the endometrium for treatment of heavy menstrual loss: a randomised trial. Lancet, 1999;354(9193):1859–1863.

    Article  PubMed  CAS  Google Scholar 

  5. D’Agostino HB and Solinas A. Percutaneous ablation therapy for hepatocellular carcinomas [comment]. AJR Am J Roentgenol, 1995;164(5):1165–1167.

    Article  PubMed  Google Scholar 

  6. Kigure T, Harada T, Satoh Y, et al. Microwave ablation of the adrenal gland: experimental study and clinical application. Br J Urol, 1996;77(2):215–220.

    Article  PubMed  CAS  Google Scholar 

  7. Montorsi F, Guazzoni G, Colombo R, et al. Transrectal microwave hyperthermia for advanced prostate cancer: long- term clinical results. J Urol, 1992;148(2 Pt l):342–345.

    PubMed  CAS  Google Scholar 

  8. Okada S. Local ablation therapy for hepatocellular carcinoma. Semin Liver Dis, 1999;19(3):323–328.

    Article  PubMed  CAS  Google Scholar 

  9. Satoh T, Seilhan TM, Stauffer PR, et al. Interstitial helical coil microwave antenna for experimental brain hyperthermia. Neurosurgery, 1988;23(5):564–569.

    Article  PubMed  CAS  Google Scholar 

  10. Sneed PK, Gutin PH, Stauffer PR, et al. Thermoradiotherapy of recurrent malignant brain tumors. Int J Radiat Oncol Biol Phys, 1992;23(4):853–861.

    Article  PubMed  CAS  Google Scholar 

  11. Erez A and Shitzer A. Controlled destruction and temperature distributions in biological tissues subjected to monoactive electrocoagulation. J Biomech Eng, 1980;102(l):42–49.

    Article  PubMed  CAS  Google Scholar 

  12. Organ LW. Electrophysiologic principles of radiofrequency lesion making. Appl Neurophysiol, 1976;39(2):69–76.

    PubMed  Google Scholar 

  13. Haines DE and Watson DD. Tissue heating during radiofrequency catheter ablation: a thermodynamic model and observations in isolated perfused and superfused canine right ventricular free wall. Pacing Clin Electrophysiol, 1989;12(6):962–976.

    Article  PubMed  CAS  Google Scholar 

  14. Durney C, Electromagnetic field propagation and interactions with tissue, in An Introduction to the Practical Aspects of Clinical Hyperthermia, S. Fields and J. Hand, Editors. 1990, Taylor and Francis: New York, NY. p. 793–816.

    Google Scholar 

  15. Durney CH. Interactions between electromagnetic fields and biological systems. Ann N Y Acad Sci, 1992;649:19–34.

    Article  PubMed  CAS  Google Scholar 

  16. Mechling JA and Strohbehn JW. A theoretical comparison of the temperature distributions produced by three interstitial hyperthermia systems [published erratum appears in Int J Radiat Oncol Biol Phys 1987 Jun;13(6):949].

    Article  Google Scholar 

  17. Mechling JA and Strohbehn JW. A theoretical comparison of the temperature distributions produced by three interstitial hyperthermia systems [published erratum appears in Int J Radiat Oncol Biol Phys, 1986;12(12):2137–2149.

    Article  PubMed  CAS  Google Scholar 

  18. Satoh T, Stauffer PR, and Fike JR. Thermal distribution studies of helical coil microwave antennas for interstitial hyperthermia. Int J Radiat Oncol Biol Phys, 1988;15(5): 1209–1218.

    Article  PubMed  CAS  Google Scholar 

  19. Wonnell TL, Stauffer PR, and Langberg JJ. Evaluation of microwave and radio frequency catheter ablation in a myocardium-equivalent phantom model. IEEE Trans Biomed Eng, 1992;39(10):1086–1095.

    Article  PubMed  CAS  Google Scholar 

  20. Whayne JG, Nath S, and Haines DE. Microwave catheter ablation of myocardium in vitro. Assessment of the characteristics of tissue heating and injury. Circulation, 1994;89(5):2390–2395.

    Article  PubMed  CAS  Google Scholar 

  21. Yang X, Watanabe I, Kojima T, et al. Microwave ablation of the atrioventricular junction in vivo and ventricular myocardium in vitro and in vivo. Effects of varying power and duration on lesion volume. Jpn Heart J, 1994;35(2): 175–191.

    Article  PubMed  CAS  Google Scholar 

  22. Watanabe H, Hayashi J, Sugawara M, et al. Experimental application of microwave tissue coagulation to ventricular myocardium. Ann Thorac Surg, 1999;67(3):666–671.

    Article  PubMed  CAS  Google Scholar 

  23. Liem LB, Mead RH, Shenasa M, et al. In vitro and in vivo results of transcatheter microwave ablation using forward-firing tip antenna design. Pacing Clin Electrophysiol, 1996; 19(11 Pt 2):2004–2008.

    Article  PubMed  CAS  Google Scholar 

  24. VanderBrink BA, Gilbride C, Aronovitz MJ, et al. Safety and efficacy of a steerable temperature monitoring microwave catheter system for ventricular myocardial ablation [In Process Citation]. J Cardiovasc Electrophysiol, 2000;11(3):305–310.

    Article  Google Scholar 

  25. Vanderbrink BA, Gu Z, Rodriguez V, et al. Microwave ablation using a spiral antenna design in a porcine thigh muscle preparation: in vivo assessment of temperature profile and lesion geometry. J Cardiovasc Electrophysiol, 2000; 11(2): 193–198.

    Article  PubMed  CAS  Google Scholar 

  26. Jumrussirikul P, Chen JT, Jenkins M, et al. Prospective comparison of temperature guided microwave and radiofrequency catheter ablation in the swine heart. Pacing Clin Electrophysiol, 1998;21 (7): 1364–1374.

    Article  PubMed  CAS  Google Scholar 

  27. Bostwick DG and Larson TR. Transurethral microwave thermal therapy: pathologic findings in the canine prostate. Prostate, 1995;26(3):116–122.

    Article  PubMed  CAS  Google Scholar 

  28. Hodgson DA, Feldberg IB, Sharp N, et al. Microwave endometrial ablation: development, clinical trials and outcomes at three years. Br J Obstet Gynaecol, 1999;106(7):684–694.

    Article  PubMed  CAS  Google Scholar 

  29. Sulser T. [Benign prostatic hyperplasia: prostatectomy and alternatives]. Ther Umsch, 1995;52(6):383–392.

    PubMed  CAS  Google Scholar 

  30. Langberg JJ, Wonnell T, Chin MC, et al. Catheter ablation of the atrioventricular junction using a helical microwave antenna: a novel means of coupling energy to the endocardium. Pacing Clin Electrophysiol, 1991;14(12):2105–2113.

    Article  PubMed  CAS  Google Scholar 

  31. Lin JC, Beckman KJ, Hariman RJ, et al. Microwave ablation of the atrioventricular junction in open-chest dogs. Bioelectromagnetics, 1995; 16(2):97–105.

    Article  PubMed  CAS  Google Scholar 

  32. Dudar TE and Jain RK. Differential response of normal and tumor microcirculation to hyperthermia. Cancer Res, 1984;44(2):605–612.

    PubMed  CAS  Google Scholar 

  33. Thomas SP, Clout R, Deery C, et al. Microwave ablation of myocardial tissue: the effect of element design, tissue coupling, blood flow, power, and duration of exposure on lesion size. J Cardiovasc Electrophysiol, 1999;10(l):72–78.

    Article  PubMed  CAS  Google Scholar 

  34. King R, Trembly B, and Strohbehn J. The electromagnetic field of an insulated antenna in a conducting or dielectric medium. IEEE Trans Microwave Theory Technol MTT, 1983;31:574–582.

    Article  Google Scholar 

  35. Johnson C and Guy A. Nonionizing electromagnetic wave effects in biological materials and systems. Proc IEEE, 1972;60:692–709.

    Article  Google Scholar 

  36. Guy A. Analysis of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom model. IEEE Trans Microw Theory Tech MTT, 1972; 19:205–214.

    Google Scholar 

  37. Lin J, Microwave propagation in biological dielectrics with application cardiopulmonary interrogation, in Medical Applications of Microwave Imaging, L. Larsen and J. Jacobi, Editors. 1986, IEEE Press: New York, NY. p. 47–58.

    Google Scholar 

  38. Lin J, Engineering and biophysical aspects of microwave and radiofrequency radiation, in Hyperthermia, D. Watmough and W. Ross, Editors. 1986, Blackie and Sons: Glasgow, UK. p. 42–75.

    Google Scholar 

  39. Lin JC. Catheter microwave ablation therapy for cardiac arrhythmias. Bioelectromagnetics, 1999;Suppl(4): 120–132.

    Article  PubMed  Google Scholar 

  40. Ikeda T, Sugi K, Enjoji Y, et al. Relation between the size of lesions and arrhythmias produced by microwave catheter ablation with a special electrode device. Jpn Circ J, 1994;58(3):214–221.

    Article  PubMed  CAS  Google Scholar 

  41. Shetty S, Ishii TK, Krum DP, et al. Microwave applicator design for cardiac tissue ablations. J Microw Power Electromagn Energy, 1996;31(1):59–66.

    PubMed  CAS  Google Scholar 

  42. Nevels RD, Arndt GD, Raffoul GW, et al. Microwave catheter design. IEEE Trans Biomed Eng, 1998;45(7):885–890.

    Article  PubMed  CAS  Google Scholar 

  43. Lin JC and Wang YJ. The cap-choke catheter antenna for microwave ablation treatment. IEEE Trans Biomed Eng, 1996;43(6):657–660.

    Article  PubMed  CAS  Google Scholar 

  44. Gu Z, Rappaport CM, Wang PJ, et al. A 2 1/4-turn spiral antenna for catheter cardiac ablation. IEEE Trans Biomed Eng, 1999;46(12): 1480–1482.

    Article  PubMed  CAS  Google Scholar 

  45. Berube D and Liem L. Microwave catheter ablation for the treatment of atrial flutter, in Surgical Applications of Enrgy. 1998. San Jose, CA: The International Society for Optical Engineering.

    Google Scholar 

  46. Haugh C, Davidson ES, Estes NA, 3rd, et al. Pulsing microwave energy: a method to create more uniform myocardial temperature gradients. J Interv Card Electrophysiol, 1997; 1(1):57–65.

    Article  PubMed  CAS  Google Scholar 

  47. Ikeda T, Sugi K, Fukazawa H, et al. [An experimental study of catheter ablation using microwave energy via coaxial electrode catheter]. Kokyu To Junkan, 1993;41(10):981–985.

    PubMed  CAS  Google Scholar 

  48. Liem LB, Mead RH, Shenasa M, et al. Microwave catheter ablation using a clinical prototype system with a lateral firing antenna design. Pacing Clin Electrophysiol, 1998;21(4 Pt 1):714–721.

    Article  PubMed  CAS  Google Scholar 

  49. Liem LB and Mead RH. Microwave linear ablation of the isthmus between the inferior vena cava and tricuspid annulus. Pacing Clin Electrophysiol, 1998;21(11 Pt l):2079–2086.

    Article  PubMed  CAS  Google Scholar 

  50. Knaut M, Spitzer SG, Karolyi L, et al. Intraoperative microwave ablation for curative treatment of atrial fibrillation in open heart surgery~the MICRO-STAF and MICRO-PASS pilot trial. MICROwave Application in Surgical treatment of Atrial Fibrillation. MICROwave Application for the Treatment of Atrial Fibrillation in Bypass-Surgery. Thorac Cardiovasc Surg, 1999;47 Suppl 3:379–384.

    Article  PubMed  Google Scholar 

  51. Spitzer SG, Richter P, Knaut M, et al. Treatment of atrial fibrillation in open heart surgery— the potential role of microwave energy. Thorac Cardiovasc Surg, 1999;47 Suppl 3:374–378.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Liem, L.B., Berubé, D. (2001). Transcatheter Microwave Ablation. In: Liem, L.B., Downar, E. (eds) Progress in Catheter Ablation. Developments in Cardiovascular Medicine, vol 241. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9791-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9791-3_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5882-9

  • Online ISBN: 978-94-015-9791-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics