Molecular Strategies to Overcome Salt Stress in Agriculture

  • Ilga Winicov
Part of the Springer Handbook Series of Plant Ecophysiology book series (KLEC, volume 1)


Salinity and drought are responsible for much of the yield reduction in agriculture throughout the world. Furthermore, continued salinization of arable land is becoming widespread because of poor local irrigation practices (Tanji, 1990), thus decreasing the yield from previously productive land. Improving plant resistance to salinity and drought stress, both of which lead to cellular osmotic and oxidative problems, is therefore a challenge to be overcome in order to feed the burgeoning world population. Increased salt-tolerance of crop plants would provide sustainable agriculture on marginal lands and could potentially even improve overall crop yield.


Quantitative Trait Locus Transgenic Plant Salt Stress Drought Stress Salt Tolerance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aasland, R., Gibson, T.J. and Stewart, A.F. 1995. The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem. Sci. 20, 56–59.PubMedGoogle Scholar
  2. Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D. and Shinozaki, K. 1997. Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell 9, 1859–1868.PubMedGoogle Scholar
  3. Allakhverdiev, S.I., Nishiyama, Y., Suzuki, I., Tasaka, Y. and Murata, N. 1999. Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc. Natl. Acad. Sci. USA. 96, 5862–5867.PubMedGoogle Scholar
  4. Allen, R.D. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107, 1049–1054.PubMedGoogle Scholar
  5. Apse, M. P., Aharon, G. S., Snedden, W. A. and Blumwald, E. 1999. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285, 1256–1258.Google Scholar
  6. Arisi, A.-C.M., Comic, G., Jouanin, L. and Foyer, C.H. 1998. Overexpression of iron superoxide dismutase in transformed poplar modiefies the regulation of photosynthesis at low CO2 partial pressures or following exposure to the prooxidant herbicide methyl viologen. Plant Physiol. 117, 565–574.PubMedGoogle Scholar
  7. Bastola, D.R., Pethe, V.V. and Winicov, I. 1998. Alfinl, a novel zinc-finger protein in alfalfa roots that binds to promoter elements in the salt-inducible MsPRP2 gene. Plant Mol. Biol. 38, 1123–1135.PubMedGoogle Scholar
  8. Binzel, M.L., Hess, F.D., Bressan, R.A. and Hasegawa, P.M. 1988. Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol. 86, 607–614.PubMedGoogle Scholar
  9. Bohnert, H.J., Su, H. and Shen, B. 1999. “Molecular mechanisms of salinity tolerance”. In: Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants, ed. K. Shinozaki, K. and Yamaguchi-Shinozak.i R.G. Landes Co. Austin.Google Scholar
  10. Bostock, R.M. and Quatrano, R.S. 1992. Regulation of Em gene expression in rice:interaction between osmotic stress and abscisic acid. Plant Physiol. 98, 1356–1363.PubMedGoogle Scholar
  11. Bowler, C., Slooten, L., Vandenbranden, 5’., Rycke, R.D., Botterman, J., Sybesma, C., Montagu, M.V. and Inze, D. 1991. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO 10, 1723–1732.Google Scholar
  12. Bray, E. A. 1997. Plant responses to water deficit. Trends in Plant Sci. 2, 48–54.Google Scholar
  13. Cheng, W., Su, J., Zhu, B., Jayaprakash, T.L. and Wu, R. 1998. “Development of transgenic cereal crop plants that are tolerant to high salt, drought and low temperature”. In: Frontiers in Biology: The Challenges of Biodiversity., ed. C. H. Chou and K. T. Shao. pp. 115–122. Academia Sinica, Taipei.Google Scholar
  14. Close, T. 1997. Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiolog. Plant. 100, 291–296.Google Scholar
  15. Close, T.J. 1996. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiolog. Plant. 97, 795–803.Google Scholar
  16. Cohen, A. and Bray, E. A. 1990. Characterization of three mRNAs that accumulate in wilted tomato leaves in response to elevated levels of endogenous abscisic acid Planta 182, 2733.Google Scholar
  17. Cosgrove, D.J. 1997. Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9, 1031–1041.PubMedGoogle Scholar
  18. Deak, M., Horvath, G.V., Daveletova, S., Torok, K., Sass, L., Vass, I., Batna, B., Kiraly, Z. and Dudits, D. 1999. Plants ectopically expressing the iron-binding protein ferritin, are tolerant to oxidative damages and pathogens. Nat. 8iotechnol. 17, 192–196.Google Scholar
  19. Delauney, A.J. and Verma, D. P. S. 1993. Proline biosynthesis and osmoregulation in plants. Plant J. 4, 215–223.Google Scholar
  20. Dure, L.I. 1992. “The LEA proteins of higher plants”. In: Control of Plant Gene Expression, ed. D. P. S. Verma. pp. 325–335. CRC Press, Bocca Raton.Google Scholar
  21. Eckardt, A.N., McHenry, L. and Guiltinan, M. J. 1998. Overexpression of EmBP, a dominant negative inhibitor of G-box-dependent transactivation, alters vegetative development in transgenic tobacco. Plant Mol. Biol. 27, 411–418.Google Scholar
  22. Ferrario-Mery, S., Valadier, M.-H. and Foyer, C.H. 1998. Overexpression of nitrate reductase in tobacco delays drought-induced decreases in nitrate reductase activity and mRNA. Plant Physiol. 117, 293–302.PubMedGoogle Scholar
  23. Flowers, T.J., Koyama, M.L., Flowers, S.A., Sudhakar, C., Singh, K. P. and Yeo, A. R. 2000. QTL: their place in engineering tolerance of rice to salinity. J. Exp. Botany 51, 99–106.Google Scholar
  24. Foolad, M.R. and Jones, R.A. 1993. Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor. Appl. Genet. 87, 184–192.Google Scholar
  25. Foyer, C.H., Descourvieres, P. and Kunert, K. J. 1994. Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Envir. 17, 507–523.Google Scholar
  26. Foyer, C.H., Kingston-Smith, A.H., Harvinson, J., Arisis, A.-C. M., Jouanin, L. and Noctor, G. 1998. “The use of transformed plants in the assesment of physiological stress responses”. In: Responses of plant metabolism to air polution and global change., eds. L. J. De Kok and I. Stulen. pp. 251–261. Backhuys, Leiden.Google Scholar
  27. Frank, W., Munnik, T., Kerkmann, K., Salamini, F. and Bartels, D. 2000. Water deficit triggers phospholipase D activity in the resurection plant Craterostigma plantagineum. Plant Cell 12, 111–123.Google Scholar
  28. Frank, W., Phillips, J., Salatini, F. and Bartels, D. 1998. Two dehydration-inducible transcripts from the resurrection plant Craterostigma plantagineum encode interacting homeodomain-leucine zipper proteins. Plant J. 15, 413–421.PubMedGoogle Scholar
  29. Gage, D.A., Rhodes, D., Nolte, K.D., Hicks, W.A., Leustek, T., Cooper, A.J.L. and Hanson, A.D. 1997. A new route for synthesis of dimethyl-sulphoniopropionate in marine algae. Nature 387, 891–894.PubMedGoogle Scholar
  30. Galiba, G., Simon-Sarkadi, L., Kocsy, L., Salgo, G. and Sutka, A. 1992. Possible chromosomal location of genes determining the osmoregulation of wheat. Theor. Appl. Genet. 85, 415–418.Google Scholar
  31. Guiltinan, M.J., Marcotte, W.R. and Quatrano, R.S. 1990. A plant leucine zipper protein recognizes an abscisic acid response element. Science 250, 267–270.PubMedGoogle Scholar
  32. Gupta, A.S., Webb, R.P., Holaday, A.S. and Allen, R. I). 1993. Overexpression of superoxide dismutase protects plants form oxidative stress. Plant Physiol. 103, 1067–1073.PubMedGoogle Scholar
  33. Halfter, U., Ishitani, M. and Zhu, J.-K. 2000. The Arabidopsis SOS2 protein kinase phsically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. USA. 97, 3735–3740.PubMedGoogle Scholar
  34. Harmon, A.C., Gribskov, M. and Harper, J.F. 2000. CDPKs-a kinase for every Ca+2 signal. Trends Plant Sci. 5, 154–159.PubMedGoogle Scholar
  35. Hasegawa, P.M., Bressan, R.A., Zhu, J.-K. and Bohnert, H.J. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 436–499.Google Scholar
  36. Hayashi, H., Mustardy, L., Deshnium, P., Ida, M. and Murata, N. 1997. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J. 12, 133–142.PubMedGoogle Scholar
  37. Hellmann, H., Funck, D., Rentsch, D. and Frommer, W. B. 2000. Hypersensitivity of an Arabidopsis sugar signaling mutant toward exogenous proline application. Plant Physiol. 122, 357–367.PubMedGoogle Scholar
  38. Hirayama, T., Ohto, C., Mizoguchi, T. and Shinozaki, K. 1995. A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 92, 3903–3907.Google Scholar
  39. Holmstrom, K.-O., Mantyla, E., Welin, B., Mandai, A., Paiva, E.T., Tunnela, O.E. and Longdesborough, J. 1996. Drought tolerance in tobacco. Nature 379, 683–684.Google Scholar
  40. Huang, J., Hiriji, R., Adam, L., Rozwadowski, K.L., Hammerlindl, J.K., Keller, W.A. and Selvaraj, G. 2000. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol. 122, 747–756.PubMedGoogle Scholar
  41. Hwang, I. and Goodman, H.M. 1995. An Arabidopsis thaliana root-specific kinase homolog is induced by dehydration, ABA, and NaCl. Plant J. 8, 37–43.PubMedGoogle Scholar
  42. Ingram, J. and Bartels, D. 1996. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 377–403.PubMedGoogle Scholar
  43. Ismail, A.M., Hall, A.E. and Close, T.J. 1999. Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc. Natl. Acad. Sci. USA. 96, 13566–13570.PubMedGoogle Scholar
  44. Kaldenhoff, R., Grote, K., Zhu, J.-J. and Zimmermann, U. 1998. Significance of plasmalemma aquaporins for water transport in Arabidopsis thaliana. Plant J. 14, 121–128.Google Scholar
  45. Karakas, B.,Ozias-Akins, P, Stushnoff, C., Suefferheld, M. and Rieger, M. 1997. Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant Cell Envir. 20, 609–616.Google Scholar
  46. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnol. 17, 287–291.Google Scholar
  47. Kidwell, K.K., Hartweck, L.M., Yandell, B.S., Crump, P.M., Brummer, J.E., Moutray, J. and Osborn, T.C. 1999. Forage yields of alfalfa populations derived from parents selected on the basis of molecular marker diversity. Crop Sci. 39, 223–227.Google Scholar
  48. Kieber, J.J., Rothenberg, M., Roman, G., Feldmann, K.A. and Ecker, J.R. 1993. CTR1: a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the RAf family of protein kinases. Cell 72, 427–441.PubMedGoogle Scholar
  49. Kishor, P.B.K., Hong, Z., Miao, G.-H., Hu, C.-A.A. and Verma, D.P.S. 1995. Overexpression of Al-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108, 1387–1394.PubMedGoogle Scholar
  50. Kiyosue, T., Abe, H., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1998. ERD6, a cDNA clone for an early dehydration-induced gene of Arabidopsis, encodes a putative sugar transporter. Biochim. Biophys. Acta 1370, 187–191.PubMedGoogle Scholar
  51. Kiyosue, T., Yoshiba, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1996. A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in praline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8, 1323–1335.Google Scholar
  52. Kjellbom, P., Larsson, C., Johansson, I., Karisson, M. and Johanson, U. 1999. Aquaporins and water homeostasis in plants. Trends Plant Sci. 4, 308–314.PubMedGoogle Scholar
  53. Kovtun, Y., Chiu, W.-L., Tena, G. and Sheen, J. 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci, USA. 97, 2940–2945.Google Scholar
  54. Lebreton, C., Jazic-Jancic, V., Steed, A., Pekic, S. and Quarrie, S.A. 1995. Identification of QTL’s for drought responses in maize and their use in testing causal relationships between traits. J. Exp. Bot. 46, 853–865.Google Scholar
  55. Lilius, G., Homberg, N. and Bulow, L. 1996. Enhanced NaCI stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Bio-Technology 14, 177–180.Google Scholar
  56. Lilley, J.M., Ludlow, M.M., McCouch, S.R. and OToole, J.C. 1996. Locating QTL for osmotic adjustment and dehydration tolerance in rice. J. Exp. Bot. 47, 1427–1436.Google Scholar
  57. Lippuner, V., Cyert, M.S. and Gasser, C.S. 1996. Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance in wild-type yeast. J. Biol. Chem. 271, 12859–12866.PubMedGoogle Scholar
  58. Liu, J., Ishitani, M., Halfter, U., Kim, C.-S. and Zhu, J.-K. 2000. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci. USA. 97, 3730–3734.PubMedGoogle Scholar
  59. Liu, J. and Zhu, J.-K. 1997a. An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proc. Natl. Acad. Sci. USA. 94, 14960–14964.PubMedGoogle Scholar
  60. Liu, J. and Zhu, J.-K. 1997b. Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiol. 114, 591–596.Google Scholar
  61. Liu, J. and Zhu, J.-K. 1998. A calcium sensor homolog required for plant salt tolerance. Science 280, 1943–1945.PubMedGoogle Scholar
  62. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1998. Two transcription factors, DREB1 and DREB2, with and EREBP/AP2 DNA binding domain separate two cellular signal transduction pahtways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391–1406.Google Scholar
  63. McKersie, B.D., Bowley, S.R., Harjanto, E. and Leprince, O. 1996. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 111, 1177–1181.PubMedGoogle Scholar
  64. McNeil, S.D., Nuccio, M.L. and Hanson, A.D. 1999. Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol. 120, 945–949.PubMedGoogle Scholar
  65. Meyer, G., Schmitt, J.M. and Bohnert, H.J. 1990. Direct screening of a small genome: estimation of the magnitude of plant gene expression changes during adaptation to high salt. Molec. Gen. Genet. 224, 347–356.PubMedGoogle Scholar
  66. Mikami, K., Katagiri, T., Iuchi, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1998. A gene encoding phosphatidylinositol-4-phosphate 5-kinase is induced by water stress and abscisic acid in Arabidopsis thaliana. Plant J. 15, 563–568.Google Scholar
  67. Mizoguchi, T., Ichimura, K., Yoshida, R. and Shinozaki, K. 2000. “MAP kinase cascades in Arabidopsis: their roles in stress and hormone responses”. In: MAP Kinases in Plant Signal Transduction., ed. H. Hirt. pp. 29–38. Results and Problems in Cell Differentiation. Vol. 27. Berlin, Springer-Verlag, Heidelberg.Google Scholar
  68. Mizoguchi, T., Irie, K., Hirayama, T., Hayashida, N., Yamaguchi-Shinozaki, K., Matsumoto, K. and Shinozaki, K. 1996. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 93, 765–769.Google Scholar
  69. Moller, S.G. and Chua, N-H. 1999. Interactions and intersections of plant signaling pathways. J. Mol. Biol. 283, 219–234.Google Scholar
  70. Morgan, J.M. and Tan, M.K. 1996. Chromosomal location of a wheat osmoregulation gene using RFLP analysis. Aust. J. Plant Physiol. 23, 803–806.Google Scholar
  71. Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1999a. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett. 461, 205–210.Google Scholar
  72. Nanjo, T., Kobayashi, M., Yoshiba, Y., Sanada, Y., Wada, K., Tsukaya, H., Kakubari, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1999b. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J. 18, 185–193.Google Scholar
  73. Niu, X., Bressan, R.A., Hasegawa, P.M. and Prado, J.M. 1995. Ion homeostasis in NaC1 stress environments. Plant Physiol. 109, 735–742.PubMedGoogle Scholar
  74. Noctor, G. and Foyer, C. H. 1998. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 249–279.PubMedGoogle Scholar
  75. Nuccio, M.L., Russell, B.L., Nolte, K.D., Rathinasabapathi, B., Gage, D.A. and Hanson, A.D. 1998. The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J. 16, 487–498.PubMedGoogle Scholar
  76. Pardo, J.M., Reddy, M.P., Yang, S., Maggio, A., Huh, G.-H., Matsumoto, T., Coca, M.A., Paino-DUrzo, M., Koiwa, H., Yun, D.-J., Watad, A.A., Bressan, R.A. and Hasegawa, P.M. 1998. Stress signaling through Cat’/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc. Natl. Acad. Sci. USA. 95, 9681–9686.PubMedGoogle Scholar
  77. Petrusa, L.M. and Winicov, I. 1997. Proline status in salt-tolerant and salt-sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol. Biochem. 35, 303–310.Google Scholar
  78. Pilon-Smits, E.A.H., Ebskamp, M.J.M., Paul, M.J., Jeuken, M.J.W., Weisbeek, P.F. and Smeekens, S.C.M. 1995. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol. 107, 125–130.PubMedGoogle Scholar
  79. Qin, X. and Zeevaart, J.A.D. 1999. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc. Natl. Acad. Sci. USA. 96, 15354–15361.PubMedGoogle Scholar
  80. Ray, I. M., Townsend, M.S., Muncy, C.M. and Henning, J.A.. 1999. Heritabilities of water-use efficiency traits and correlations with agronomic traits in water-stressed alfalfa. Crop Sci. 39, 494–498.Google Scholar
  81. Rentsch, D., Himer, B., Schmelzer, E. and Frommer, W.B. 1996. Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell 8, 1437–1446.PubMedGoogle Scholar
  82. Ribaut, J.-M. and Hoisington, D. 1998. Marker-assisted selection: new tools and strategies. Trends Plant Sci. 3, 236–239.Google Scholar
  83. Romero, C., Belles, J.M., Vaya, J.L., Serrano, R. and Culianez-Macia, F. 1997. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201, 293–297.PubMedGoogle Scholar
  84. Roxas, V.P., Smith, R.K., Allen, E.R. and Allen, R.D. 1997. Overexpression of glutathione Stransferase/glutathione peroxidase enhances the growth of transgenic tobacco during stress. Naure. Biotechnol. 15, 988–991.Google Scholar
  85. Rubio, F., Gassmann, W. and Schroeder, J. I. 1996. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270, 1660–1663.Google Scholar
  86. Saha, V., Chaplin, T., Gregorini, A., Ayton, P. and Yound, B.D. 1995. The leukemiaassociated-protein (LAP) domain, a cysteine-rich motif, is present in a wide range of proteins, including MLL, AFIO, and MLLT6 proteins. Proc. Natl. Acad. Sci. USA. 92, 9737–9741.PubMedGoogle Scholar
  87. Sakamoto, A., Alia and Murata, N. 1998. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol. Biol. 38, 1011–1019.Google Scholar
  88. Saneoka, H., Nagasaka, C., Hahn, D.T., Yang, W.-J., Premachandra, G.S., Joly, R.J. and Rhodes, D. 1995. Salt tolerance of glycinebetaine-deficient and containing maize lines. Plant Physiol. 107, 631–638.PubMedGoogle Scholar
  89. Serrano, R., Culianz-Macia, A. and Moreno, V. 1999. Genetic engineering of salt and drought tolerance with yeast regulatory genes. Scientia Hort. 78, 261–269.Google Scholar
  90. Sheen, J. 1996. Cat+ -dependent protein kinases and stress signal transduction in plants. Science 274, 1900–1902.PubMedGoogle Scholar
  91. Shen, B., Jensen, R.G. and Bohnert, H.J. 1997. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol. 113, 1177–1183.PubMedGoogle Scholar
  92. Sheveleva, E., Chmara, W., Bohnert, H.J. and Jensen, R.G. 1997. Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol. 115, 1211–1219.PubMedGoogle Scholar
  93. Sheveleva, E.V., Marquez, S., Chmara, W., Zegeer, A., Jensen, R.G. and Bohnert, H.J. 1998. Sorbitol-6-phosphate dehydrogenase expression in transgenic tobacco. Plant Physiol. 117, 831–839.PubMedGoogle Scholar
  94. Shinozaki, K. and Yamaguchi-Shinozaki, K. 1999. “Molecular responses to drought stress”. In: Cold, drought, heat and salt stress in higher plants, eds. K. Shinozaki, K and Yamaguchi-Shinozaki. R.G. Landes Co., Austin.Google Scholar
  95. Shinozaki, K., Yamaguchi-Shinozaki, K., Liu, Q., Kasuga, M., Ichimura, K., Mizoguchi, T., Urao, T., Miyata, S., Nakashima, K., Shinwari, Z.K., Sakuma, Y., Ito, T. and Seki, M. 1999. “Molecular responses to drought stress in plants: regulation of gene expression and signal transduction”. In: Plant Responses to Environmental Stress., eds. M. F. Smallwood, C. M. Calvert and D. J. Bowles. pp. 133–143. BIOS Scientific Publishers. Oxford.Google Scholar
  96. Su, J., Shen, Q., Ho, T.-H.D. and Wu, R. 1998. Dehydration-stress-regulated transgene expression in stably transformed rice plants. Plant Physiol. 117, 913–922.PubMedGoogle Scholar
  97. Tanji, K.K. 1990. Agricultural salinity and management NY, USA: Irrigation and Drainage Division, American Society of Civil Engineers.Google Scholar
  98. Tarczynski, M.C., Jensen, R.G. and Bohnert, H.J. 1993. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259, 508–510.PubMedGoogle Scholar
  99. Taybi, T. and Cushman, J.C. 1999. Signaling events leading to crassulacean acid metabolism induction in the common ice plant. Plant Physiol. 121, 545–555.PubMedGoogle Scholar
  100. Teulat, B., This, D., Khairallah, M., Bornes, C., Ragot, C., Sourdille, P., Leroy, P., Monneveux, P. and Charrier, A. 1998. Several QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L.). Theor. Appl. Gen. 96, 688–698.Google Scholar
  101. Thomas, J.C., Sepahi, M., Arendall, B. and Bohnert, H.J. 1995. Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Envir. 18, 801–806.Google Scholar
  102. Torsethaugen, G., Pitcher, L.H., Zilinskas, B.A. and Pell, E.J. 1997. Overproduction of ascorbate peroxidase in the tobacco chloroplast does not provide protection against ozone. Plant Physiol. 114, 529–537.PubMedGoogle Scholar
  103. Trossat, C., Rathinasabapathi, B., Weretilnyk, E.A., Shen, T.-L., Huang, Z.-H., Gage, D.A. and Hanson, A.D. 1998. Salinity promotes accumulation of 3-dimethylsulfonioproprionate and its precursor S-methylmethionine in chloroplasts. Plant Physiol. 116, 165–171.PubMedGoogle Scholar
  104. Tyystjarvi, E., Riikonen, M., Arisi, A.-C.M., Kettunen, R., Jouanin, L. and Foyer, C. H. 1999. Photoinhibition of photosystem II in tobacco plants overexpressing glutathione reductase and poplars overexpressing susperoxide dismutase. Physiol. Plant. 105, 409–416.Google Scholar
  105. Urao, T., Katagiri, T., Mizoguchi, T., Yamaguchi-Shinozaki, K., Hayashida, N. and Shinozaki, K. 1994. Two genes that encode Cat+ -dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Mol. Gen. Genet. 244, 331–340.PubMedGoogle Scholar
  106. Urao, T., Yakubov, B., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1998. Stress-responsive expression of genes for two-component response regulator-like proteins in Arabidopsis thaliana. FEBS Lett. 427, 175–178.Google Scholar
  107. Van Camp, W., Capiau, K., Van Montagu, M., Inze, D. and Slooten, L. 1996. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol. 112, 1703–1714.PubMedGoogle Scholar
  108. van der Luit, A.H., Olivari, C., Haley, A., Knight, M.R. and Trewawas, A.J. 1999. Distinct calcium signaling pathways regulate clamodulin gene expression in tobacco. Plant Physiol. 121, 705–714.Google Scholar
  109. Verma, D.P.S. 1999. “Osmotic stress tolerance in plants: role of proline and sulfur metabolisms”. In: Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants, eds. K. Shinozaki, K. and Yamaguchi-Shinozaki. pp. 153–168. R.G. Landes Co., Austin.Google Scholar
  110. Werner-Fraczek, J.E. and Close, T.J. 1998. Genetic studies of Triticeae dehydrins: assignment of seed proteins and a regulatory factor to map positions. Theor. Appl. Genet. 97, 220226.Google Scholar
  111. Winicov, I. 1990. Gene expression in salt tolerant alfalfa cell cultures and the salt tolerant plants regenerated from these cultures. In: Progress in Plant Cellular and Molecular Biology. pp. 301–310. Kluwer Academic Press, Dordrecht.Google Scholar
  112. Winicov, I. 1991. Characterization of salt tolerant alfalfa (Medicago sativa L.) plants regenerated from salt tolerant cell lines. Plant Cell Rep. 10, 561–564.Google Scholar
  113. Winicov, I. 1993. cDNA encoding putative zinc finger motifs from salt-tolerant alfalfa (Medicago sativa L.) cells. Plant Physiol. 102, 681–682.Google Scholar
  114. Winicov, I. 1996. Characterization of rice (Oryza sativa L.) plants regenerated from salt-tolerant cell lines. Plant Sci. 113, 105–111.Google Scholar
  115. Winicov, I. 1998. New molecular approaches to improving salt tolerance in crop plants. Ann. Bot. 82, 703–710.Google Scholar
  116. Winicov, I. 2000. Alfinl transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta 210, 416–422.PubMedGoogle Scholar
  117. Winicov, I. and Bastola, D.R. 1997. Salt tolerance in crop plants: new approaches through tissue culture and gene regulation. Acta Physiol. Plant. 19, 435–449.Google Scholar
  118. Winicov, I. and Bastola, D.R. 1999. Transgenic overexpression of the transcription factor Alfinl enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants. Plant Physiol 120, 473–80.PubMedGoogle Scholar
  119. Winicov, I. and Shirzadegan, M. 1997. Tissue specific modulation of salt inducible gene expression: callus versus whole plant response in salt tolerant alfalfa. Physiol. Plant. 100, 314–319.Google Scholar
  120. Winicov, I., Waterborg, J.H., Harrington, R.E. and McCoy, T.J. 1989. Messenger RNA induction in cellular salt tolerance of alfalfa (Medicago sativa). Plant Cell Rep. 8, 6–11.Google Scholar
  121. Wu, S.-J., Ding, L. and Zhu, J.-K. 1996. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8, 617–627.PubMedGoogle Scholar
  122. Xu, D., Duan, X., Wang, B., Hong, B., Ho, T.-H.D. and Wu, R. 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110, 249–257.PubMedGoogle Scholar
  123. Xu, Q., Fu, H.-H., Gupta, R. and Luan, S. 1998. Molecular characterization of a tyrosine-specific protein phosphatase encoded by a stress-responsive gene in Arabidopsis. Plant Cell 10, 849–857.Google Scholar
  124. Yang, W.J., Nadolska-Orczyk, A., Wood, K.V., Hahn, D.T., Rich, P.J., Wood, A.J., Saneoka, H., Premachandra, G.S., Bonham, C.C., Rhodes, J.C., Joly, R.J., Samaras, Y., Godsbrough, P.B. and Rhodes, D. 1995. Near-isogenic lines of maize differing for glycinebetaine. Plant Physiol. 107, 621–630.PubMedGoogle Scholar
  125. Yoshiba, Y., Kiyosue, T., Katagiri, T., Ueda, H., Mizoguchi, T., Yamaguchi-Shinozaki, K., Wada, K., Harada, Y. and Shinozaki, K. 1995. Correlation between the induction of a gene for Δ1-pyrroline-5-carboyxylate synthetase and accumulation of praline in Arabidopsis thaliana under osmotic stress. Plant J. 7, 751–760.PubMedGoogle Scholar
  126. Zhang, J., Nguyen, H.T. and Blum, A. 1999. Genetic analysis of osmotic adjustment in crop plants. J. Exp. Bot. 50, 291–302.Google Scholar
  127. Zhu, B., Su, J., Chang, M., Verma, D.P.S., Fan, Y.-L. and Wu, R. 1998. Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Sci. 139, 41–48.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Ilga Winicov
    • 1
  1. 1.Department of Plant BiologyArizona State UniversityTempeUSA

Personalised recommendations