Advertisement

Quantitative Trait Loci (QTLs) for Analysis of Physiological and Biochemical Responses to Abiotic Stress

  • Jean-Louis Prioul
  • Claudine Thévenot
Chapter
Part of the Springer Handbook Series of Plant Ecophysiology book series (KLEC, volume 1)

Abstract

Quantitative geneticists and plant physiologists have to deal with plant variability however approaches diverse since the geneticists are interested in explaining and in using the genetic variance when the physiologists usually tend to minimise the genetic component in order to concentrate on the environmental variability. Heritability, which estimates the genetic part of the total variance, is used by the geneticist to decide if a trait is valuable for further study (i.e. genetically variable enough) and especially to map loci. When dealing with complex or quantitative traits, several loci are expected for one trait. The availability of molecular markers has allowed mapping of these quantitative trait loci, i.e. QTLs (Paterson et al., 1988).

Keywords

Quantitative Trait Locus Water Stress Drought Tolerance Relative Water Content Recombinant Inbred Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Byrne, P.F., Mcmullen, M.D., Snook, M.E., Musket, T.A., Theuri, J.M., Widstrom, N.W., Wiseman, B.R. and Coe, E.H. 1996. Quantitative trait loci and metabolic pathways: Genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks. Proc. Natl. Acad. Sci. USA 93, 8820–8825.PubMedCrossRefGoogle Scholar
  2. Causse M., Rocher, J.P., Henry, A.M., Charcosset, A. Prioul, J.L. and de Vienne, D. 1995. Genetic dissection of the relationship between carbon metabolism and early growth in maize, with emphasis on key-enzyme loci. Mol. Breed. 1, 259–272.CrossRefGoogle Scholar
  3. Causse M., Santoni, S., Damerval, C., Maurice, A., Charcosset, A., Deatrick, J. and de Vienne, D. 1996. A composite map of expressed sequences in maize. Genome 39, 418–432.PubMedCrossRefGoogle Scholar
  4. Courtois B., McLaren, G., Sinha, P.K., Prasad, K., Yadav, R. and Shen, L. 2000. Mapping QTLs associated with drought avoidance in upland rice. Mol. Breed. 6, 55–66.CrossRefGoogle Scholar
  5. Champoux M.C., Wang, G., Sarkarung, S., Mackill, D.J., Otoole, J.C., Huang, N. and McCouch, S.R. 1995. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor. Appl. Genet. 90, 969–981.Google Scholar
  6. Crasta O.R., Xu, W.W., Rosenow, D.T., Mullet, J. and Nguyen, H.T. 1999. Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol. Gen. Genet. 262, 579–588.PubMedCrossRefGoogle Scholar
  7. Crosbie T.M., Pearce, R.B. and Mock, J.J. 1981. Selection for high CO2 exchange rate among inbred lines of maize. Crop Sci. 21, 629–631.CrossRefGoogle Scholar
  8. Demarly Y. 1979. “The concept of linkat”. In: Proceedings of the Conference on Broadening Genetic Bases of Crops, eds. A.C. Zeven and A.M. van Harten, pp 257–265. PUDOC, Wageningen.Google Scholar
  9. de Vienne D., Leonardi, A., Damerval, C. and Zivy, M. 1999. Genetics of proteome variation for QTL characterization: application to drought-stress responses in maize. J. Exp. Bot. 50, 303–309.Google Scholar
  10. Flowers T.J., Koyama, M. L., Flowers, S.A., Sudhakar, C., Singh K.P. and Yeo, A.R. 2000. QTL: their place in engineering tolerance of rice to salinity, J. Exp. Bot. 51, 99–106.PubMedCrossRefGoogle Scholar
  11. Foolad M. R., Chen F.Q. and Lin, G.Y. 1998. RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato, Theor. Appl. Genet. 97, 1133–1144.CrossRefGoogle Scholar
  12. Foolad M.R. 1999. Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome 42, 727–734.CrossRefGoogle Scholar
  13. Fridman, E., Pleban, T. and Zamir, D. 2000. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc. Natl. Acad. Sci. USA 97, 4718–4723.PubMedCrossRefGoogle Scholar
  14. Frova C. and Sari-Gorla, M. 1994. Quantitative trait loci (QTLs) for pollen thermotolerance detected in maize. Mol. Gen. Genet. 245, 424–430.PubMedCrossRefGoogle Scholar
  15. Frova C., Krajewski, P., diFonzo, N., Villa, M. and Sari-Gorla, M. 1999. Genetic analysis of drought tolerance in maize by molecular markers I. Yield components. Theor. Appl. Genet. 99, 280–288.CrossRefGoogle Scholar
  16. Khavkin E. and Coe, E. 1997 Mapped genomic locations for developmental functions and QTLs reflect concerted groups in maize (Zea mays). Theor. Appl. Genet. 95, 343–352.CrossRefGoogle Scholar
  17. Lebreton C., Lazicjancic, V., Steed, A., Pekic, S. and Quarrie, S.A. 1995. Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J. Exp. Bot. 46, 853–865.CrossRefGoogle Scholar
  18. Lilley J.M., Ludlow, M.M., McCouch, S.R. and Otoole, J.C. 1996. Locating QTL for osmotic adjustment and dehydration tolerance in rice. J. Exp. Bot. 47, 1427–1436.CrossRefGoogle Scholar
  19. Paterson A.H., Lander, E.S., Hewitt, J.D., Paterson, S., Lincoln, S.E. and Tanksley, S.D. 1988. Resolution of quantitative traits into mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 33, 721–726.CrossRefGoogle Scholar
  20. Paterson A.H., Damon, S., Hewitt, J.D., Zamir, D., Rabiowitch, H.D., Lincoln, S.E. Lander, E.S. and Tanksley, S.D. 1991. Mendelian factors underlying quantitative traits in tomato: comparison across species,generations, and environments. Genetics 127, 181–197.PubMedGoogle Scholar
  21. Pelleschi S. 1997. Recherche de locus à effet quantitatif, liés au métabolisme glucidique au cours d’une contrainte hydrique, chez le maïs (Zea mays L.). Thèse, Université de Paris-Sud pp 1–163.Google Scholar
  22. Pelleschi S., Rocher, J.P. and Prioul, J.L. 1997. Effect of water restriction on carbohydrate metabolism and photosynthesis in mature maize leaves. Plant Cell Envi r. 20, 493–503.CrossRefGoogle Scholar
  23. Pelleschi S., Guy, S., Kim, J.Y., Pointe, C., Mahe, A., Barthes, L., Leonardi, A. and Prioul, J.L. 1999. Ivr2, a candidate gene for a QTL of vacuolar invertase activity in maize leaves. Gene-specific expression under water stress. Plant Mol. Biol. 39, 373–380.PubMedCrossRefGoogle Scholar
  24. Prioul J.L., Jeannette, E., Reyss, A., Gregory, N., Giroux, M., Hannah, L.C. and Causse, M. 1994. Expression of adp-glucose pyrophosphorylase in maize (Zea mays L.) grain and source leaf during grain filling. Plant Physiol. 104, 179–187.PubMedCrossRefGoogle Scholar
  25. Prioul J.L., Quarrie, S., Causse, M. and de Vienne, D. 1997. Dissecting complex physiological functions through the use of molecular quantitative genetics. J. Exp. Bot. 48, 1151–1163.CrossRefGoogle Scholar
  26. Prioul J.L., Pelleschi, S., Séne, M., Thévenot, C., Causse, M., de Vienne, D. and Leonardi, A. 1999. From QTLs for enzyme activity to candidate genes in maize. J. Exp. Bot. 50, 1281–1288.Google Scholar
  27. Quarrie S., Steed, A., Lebreton, C., Guili, M., Calestani, C. and Marmirolli, N. 1994a. Location of a gene regulating drought-induced abscisic acid production in wheat and maize and associated physiological traits. Russian J. Plant Physiol. 41, 565–571.Google Scholar
  28. Quarrie S.A., Gulli, M., Calestani, C., Steed, A. and Marmiroli, N. 1994b. Location of a gene regulating drought-induced abscisic acid production on the long arm of chromosome 5A of wheat. Theor. Appl.Genet. 89, 794–800.CrossRefGoogle Scholar
  29. Quarrie S.A., Laurie, D.A., Zhu, J.H., Lebreton, C., Semikhodskii, A., Steed, A., Witsenboer, H. and Calestani, C. 1997. QTL analysis to study the association between leaf size and abscisic acid accumulation in droughted rice leaves and comparisons across cereals. Plant Mol. Biol. 35, 155–165.PubMedCrossRefGoogle Scholar
  30. Ribaut J.M., Hoisington, D.A., Deutsch, J.A., Jiang, C. and Gonzalezdeleon, D. 1996. Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor. Appl. Genet. 92, 905–914.CrossRefGoogle Scholar
  31. Ribaut J.M., Jiang, C., Gonzalesdeleon, D., Edmeades, G.O. and Hoisington, D.A. 1997. Identification of quantitative trait loci under drought conditions in tropical maize. 2.Yield components and marker-assisted selection strategies. Theoret. Appl. Genet. 94, 887–896.CrossRefGoogle Scholar
  32. Riccardi F., Gazeau, P., de Vienne, D. and Zivy, M. 1998. Protein changes in response to progressive water deficit in maize–quantitative variation and polypeptide identification. Plant Physiol. 117, 1253–1263.PubMedCrossRefGoogle Scholar
  33. Sanguineti M. C., Tuberosa, R., Landi, P., Salvi, S., Maccaferri, M., Casarini E. and Conti, S. 1999 QTL analysis of drought related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize, J. Exp. Bot. 50, 1289–1297.Google Scholar
  34. Sari-Gorla M., Krajewski, P., DiFonzo, N., Villa, M. and Frova, C. 1999. Genetic analysis of drought tolerance in maize by molecular markers. II. Plant height and flowering. Theoret. Appl. Genet. 99, 289–295.CrossRefGoogle Scholar
  35. Séne M., Causse, M., Damerval, C., Thévenot, C. and Prioul, J.L. 2000. Quantitative trait loci affecting amylose, amylopectin and starch content in maize recombinant inbred lines. Plant Physiol. Biochem. 38, 459–472.CrossRefGoogle Scholar
  36. Stuber C.W., Lincoln, S.E., Wolff, D.W., Helentjaris, T. and Lander, E.S. 1992. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred using molecular marker. Genetics 132: 823–839.PubMedGoogle Scholar
  37. Teulat B., This, D., Khairallah, M., Bornes, C., Ragot, C., Sourdille, P., Leroy, P., Monneveux, P and Charrier, A. 1998. Several QTLs involved in osmotic adjustment trait variation in barley (Hordeum vulgare L.). Theoret. Appl. Genet. 96, 688–698.CrossRefGoogle Scholar
  38. Tozlu I., Guy C.L. and Moore, G.A. 1999. QTL analysis of Na+ and Cl-accumulation related traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and nonsaline environments. Genome 42, 692–705.Google Scholar
  39. Tuberosa R., Sanguineti, M.C., Landi, P., Salvi, S., Casarini E. and Conti, S. 1998. RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought-stressed maize (Zea mays L.), Theoret. Appl. Genet. 97, 744–755CrossRefGoogle Scholar
  40. Tripathy J.N., Zhang, J., Robin, S., Nguyen T.T. and Nguyen, H.T. 2000. QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress, Theoret. Appl. Genet. 100, 1197–1202.CrossRefGoogle Scholar
  41. Tuinstra M.R., Grote, E.M., Goldsbrough, P.B. and Ejeta, G. 1997. Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol. Breed. 3, 439–448.CrossRefGoogle Scholar
  42. Xu W.W., Subudhi, P.K., Crasta, O.R., Rosenow, D.T., Mullet J.E. and Nguyen, H.T. 2000. Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench), Genome 43, 461–469.PubMedGoogle Scholar
  43. Yadav, R., Courtois, B., Huang, N., and Mclaren, G. 1997. Mapping genes controlling root morphology and root distribution in a doubled-haploid population of rice. Theoret. Appl. Genet. 94, 619–632.CrossRefGoogle Scholar
  44. Zhang, J.X., Klueva, N.Y., Wang, Z., Wu, R., Ho, T.H.D. and Nguyen, H.T. 2000. Genetic engineering for abiotic stress resistance in crop plants. In Vitro Cell. Develop. Biol. Plant. 36, 108–114.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Jean-Louis Prioul
    • 1
  • Claudine Thévenot
    • 1
  1. 1.Institut de Biotechnologie des PlantesUniversité de Paris-SudOrsay CedexFrance

Personalised recommendations