Advertisement

Application of Genomics in Agriculture

  • Holger Hesse
  • Rainer Höfgen
Chapter
Part of the Springer Handbook Series of Plant Ecophysiology book series (KLEC, volume 1)

Abstract

The goals of agricultural plant science are to increase crop productivity and the quality of agricultural products and to protect the environment by maintaining a system of sustainable agriculture that preserves the ecological basis of plant production. These goals have significant economic implications, which are affected by environmental conditions. The inherent diversity among plant species demonstrates clearly that plants are able to adapt to environmental stresses using genetically based programs Crop improvement, i.e. the optimisation of plant features and performance according to agricultural needs, has been undertaken for hundred’s of years: agronomists, breeders, and gardeners have used classical plant breeding methods based on selection of natural variants to improve genetic sources. Methods and techniques developed in molecular biology in recent years, especially reliable transformation systems for essentially all crops and growing numbers of complete genome sequences of higher plants, are providing tools to support plant breeding strategies and allowing scientists to tackle as yet unsolved problems or to speed up breeding programmes. Such tools will extend plant breeding by introducing new, unanticipated traits, in order to develop plants in which both crop productivity and stress tolerance are enhanced.

Keywords

Quantitative Trait Locus Stress Tolerance Differential Display Indian Mustard Late Embryogenesis Abundant Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharoni, A., Keizer, L.C.P., Bouwmeester, H.J., Sun, Z.K., Alvarez-Huerta, M., Verhoeven, H.A., Blaas, J., van Houwelingen, A.M.M.L., De Vos, R.C.H., van der Voet, H., Jansen, R.C., Guis, M., Mol, J., Davis, R.W., Schena, M., van Tunen,A.J. and O’Connell, A.P. 2000. Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA micro-arrays. Plant Cell 12, 7–661.Google Scholar
  2. Azevedo, E. and Fereres, E. 1993. “Resistance to abiotic stresses”. In: Plant Breeding, eds. M.D. Hayward, N.O. Bosemark and I. Romagosa, pp. 406–412. Chapman and Hall, London.CrossRefGoogle Scholar
  3. Azpiroz-Leehan, R. and Feldmann, K.A. 1997. T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet. 13, 2–156.CrossRefGoogle Scholar
  4. Bachem, C.W.B., Vanderhoeven, R.S., Debruijn, S.M., Vreugdenhil, D., Zabeau, M. and Visser, R.G.F. 1996. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP–analysis of gene expression during potato tuber development. Plant J. 9, 745–753.PubMedCrossRefGoogle Scholar
  5. Baldwin, D., Crane, V. and Rice, D. 1999. A comparison of gel-based, nylon filter and micro-array techniques to detect differential RNA expression in plants. Curr. Opin. Plant Biol 2, 96–103.PubMedCrossRefGoogle Scholar
  6. Bassett, D.E., Eisen, M.B. and Boguski, M.S. 1999. Gene expression informatics–it’s all in your mine. Nature Genet. 21, 51–55.PubMedCrossRefGoogle Scholar
  7. Bevan, M., Bancroft, I., Bent, E., Love, K., Goodman, H., Dean, C., Bergkamp, R., Dirkse, W., Vanstaveren, M., Stiekema, W., Drost, L., Ridley, P., Hudson, S.A., Patel, K., Murphy, G., Piffanelli, P., et al,1998. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391, 485–488.Google Scholar
  8. Blaszczyk, A., Brodzik, R and Sirko, A. 1999. Increased resistance to oxidative stress in transgenic tobacco plants overexpressing bacterial serine acetyltransferase. Plant J. 20, 237–243.PubMedCrossRefGoogle Scholar
  9. Bohnert, H.J. and Sheveleva, E. 1998. Plant stress adaptations–making metabolism move. Curr. Opin. Plant Biol 1, 267–274.PubMedCrossRefGoogle Scholar
  10. Boyer, J.S. 1982. Plant productivity and environment. Science 218, 443–448.PubMedCrossRefGoogle Scholar
  11. Cooke, R., Raynal, M., Laudie, M., Grellet, F., Delseny, M., Moms, P.C., Guerrier, D., Giraudat, J., Quigley, F., Clabault, G., Li, Y.F., Mache, R., Krivitzky, M., Gy, I.J.J., Kreis, M., Lecharny, A., Parmentier, Y., Marbach, J., Fleck, J., Clement, B., Philipps, G., Herve, C., Bardet, C., Tremousaygue, D., Lescure, B., Lacomme, C., Roby, D., Jourjon, M-F., Chabrier, P., Charpenteau, J-L., Desprez, T., Amselem, J., Chiapello, H. and Höfte, H. 1996. Further progress towards a catalogue of all Arabidopsis genes–analysis of a set of 5000 non-redundant ESTs. Plant J. 9, 101–124.PubMedCrossRefGoogle Scholar
  12. Burke, D.T., Carle, G.F. and Olson, M.V. 1987. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806–12.Google Scholar
  13. Brown, P.O. and Botstein, D. 1999. Exploring the new world of the genome with DNA micro-arrays. Nature Genet. 21, 33–37.PubMedCrossRefGoogle Scholar
  14. DellaPenna, D. 1999. Nutritional genomics: manipulating plant micronutrients to improve human health. Science 285, 375–379.PubMedCrossRefGoogle Scholar
  15. Desprez, T., Amselem, J., Caboche, M. and Höfte, H. 1998. Differential gene expression in Arabidopsis monitored using cDNA arrays. Plant J. 14, 643–652.PubMedCrossRefGoogle Scholar
  16. Duggan, D.J., Bittner, M., Chen, Y.D., Meltzer, P. and Trent, J.M. 1999. Expression profiling using cDNA micro-arrays. Nature Genet. 21, 10–14.PubMedCrossRefGoogle Scholar
  17. Eisen, M.B. and Brown, P.O. 1999. DNA arrays for analysis of gene expression. Methods Enzymol. 303, 179–205.PubMedCrossRefGoogle Scholar
  18. Ermolaeva, O., Rastogi, M., Pruitt, K.D., Schuler, G.D., Bittner, M.L., Chen, Y.D., Simon, R., Meltzer, P., Trent, J.M. and Boguski, M.S. 1998. Data management and analysis for gene expression arrays. Nature Genet. 20, 19–23.PubMedCrossRefGoogle Scholar
  19. Ewing, R.M., Ben Kahla, A., Poirot, O., Lopez, F., Audic, S. and Claverie, J.M. 1999. Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression. Genome Res. 9, 950–959.PubMedCrossRefGoogle Scholar
  20. Flowers, T.J. and Yeo, A.R. 1995. Breeding for salinity resistance in crop plants: where next? Aust. J. Plant Physiol 22, 875–884.CrossRefGoogle Scholar
  21. Foodlad, M.R. 1999. Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome 42, 727–734.CrossRefGoogle Scholar
  22. Frova, C., Krajewski, P., di Fonzo, N., Villa, M. and San-Gorla, M. 1999. Genetic analysis of drought tolerance in maize by molecular markers. 1. Yield components. Theor. Appl. Genet 99, 280–288.CrossRefGoogle Scholar
  23. Frova, C., Caffulli, A. and Pallavera, E. 1999. Mapping quantitative trait loci for tolerance to abiotic stresses in maize. J. Exp. Zool 282, 164–170.CrossRefGoogle Scholar
  24. Granjeaud, S., Bertucci, F. and Jordan, B.R. 1999. Expression profiling: DNA arrays in many guises. Bioessays 21, 781–790.PubMedCrossRefGoogle Scholar
  25. Guyer, D., Patton, D. and Ward, E. 1995. Evidence for cross-pathway regulation of metabolic gene expression in plants. Proc. Natl. Acad. Sci. USA 92, 4997–5000.PubMedCrossRefGoogle Scholar
  26. Harms, K., von Ballmoos, P., Brunold, C., Höfgen, R. and Hesse, H. 2000. Expression of a bacterial serine acetyltransferase in transgenic potato plants leads to increased levels of cysteine and glutathione. Plant J. 22, 335–343.PubMedCrossRefGoogle Scholar
  27. Hawkesford, M.J. 2000. Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S-utilization efficiency. J. Exp. Bot 51, 131–138.PubMedCrossRefGoogle Scholar
  28. Holmberg, N. and Bülow, L. 1998. Improving stress tolerance in plants by gene transfer.Trends Plant Sci 3, 61–66.CrossRefGoogle Scholar
  29. Ingram, J., and Bartels, D. 1996. The molecular basis of dehydration tolerance in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol 47, 377–403.CrossRefGoogle Scholar
  30. Kasuga, M., Liu. Q., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotech 17, 287–291.Google Scholar
  31. Kozian, D.H. and Kirschbaum, B.J. 1999. Comparative gene-expression analysis. Trends in Biotech. 17, 73–78.CrossRefGoogle Scholar
  32. Kehoe, D.M., Villand, P. and Somerville, S. 1999. DNA micro-arrays for studies of higher plants and other photosynthetic organisms. Trends Plant Sci. 4, 38–41.PubMedCrossRefGoogle Scholar
  33. Kush, G.S. 1999. Green revolution: preparing for the 215` century. Genome 42, 646–655. Liang. P. and Pardee, A,B, 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–71.Google Scholar
  34. Lemieux, B., Aharoni, A. and Schena, M. 1998. Overview of DNA chip technology. Mol. Breed 4, 277–289.CrossRefGoogle Scholar
  35. Lipshutz, R.J., Fodor, S.P.A., Gingeras, T.R. and Lockhart, D.J. 1999. High density synthetic oligonucleotide arrays. Nature Genet. 21, 20–24.PubMedCrossRefGoogle Scholar
  36. Malik, M.K., Slovin, J.P., Hwang, C.H. and Zimmerman, J.L. 1999. Modified expression of a carrot small heat shock protein gene, Hsp17.7, results in increased or decreased thermotolerance. Plant J. 20, 89–99.PubMedCrossRefGoogle Scholar
  37. Martienssen, R.A. 1998. Functional genomics–probing plant gene function and expression with transposons. Proc. Natl. Acad. Sci. USA 95, 2021–2026.PubMedCrossRefGoogle Scholar
  38. Mazur, B., Krebbers, E. and Tingey, S. 1999 Gene discovery and product development for grain quality traits. Science 285, 372–375.PubMedCrossRefGoogle Scholar
  39. McNeil, S.D., Nuccio, M.L. and Hanson, A.D. 1999. Betaines and related osmoprotectants.Google Scholar
  40. Targets for metabolic engineering of stress resistance. Plant Physiol 120, 945–949. Meinke, D.W., Cherry, J.M., Dean, C., Rounsley, S.D. and Koornneef, M. 1998. Arabidopsis thaliana a model plant for genome analysis. Science 282, 678–682.Google Scholar
  41. Mekhedov, S., de Ilarduyam O.M. and Ohlrogge, J. 2000. Toward a functional catalog of the plant genome. A survey of genes for lipid biosynthesis. Plant Physiol. 122, 389–401.PubMedCrossRefGoogle Scholar
  42. Michelmore, R. 2000. Genomic approaches to plant disease resistance. Curr. Opin. Plant Biol 3, 125–131.PubMedCrossRefGoogle Scholar
  43. Mozo, T., Fischer, S., Meier-Ewert, S., Lehrach, H. and Altmann, T. 1998. Use of the IGF BAC library fo* ohysical mapping of the Arabidopsis thaliana genome. Plant J. 16, 377384.Google Scholar
  44. Mozo, T., Dewar, K., Dunn, P., Ecker, J.R., Fischer, S., Kloska, S., Lehrach, H., Marra, M., Martienssen, R., Meier-Ewert, S. and Altmann, T. 1999. A complete BAC-based physical map of the Arabidopsis thaliana genome. Nature Genet. 22, 271–275.PubMedCrossRefGoogle Scholar
  45. Newman, T., de Bruijn, F.J., Green, P., Keegstra, K., Kende, H., McIntosh, L., Ohlrogge, J., Raikhel, N., Somerville, S., Thomashow, M., Retzel, E. and Somerville, C. 1994. Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol. 106, 1241–55.PubMedCrossRefGoogle Scholar
  46. Noctor, G. and Foyer, C.H. 1998. Ascorbate and glutathione–keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol 49, 249–279.PubMedCrossRefGoogle Scholar
  47. Nuccio, M.L., Rhodes, D., McNeil, S.D. and Hanson, A.D. 1999. Metabolic engineering of plants for osmotic stress resistance. Curr. Opin. Plant. Biol 2, 128–34.PubMedCrossRefGoogle Scholar
  48. Pilon-Smits, E.A.H., Hwang, S.B., Lytle, C.M., Zhu, Y.L., Tai, J.C., Bravo, R.C., Chen, Y.C., Leustek, T. and Terry, N. 1999. Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol. 119, 123–132.PubMedCrossRefGoogle Scholar
  49. Pruitt, R.E. and Meyerowitz, E.M. 1986. Characterization of the genome of Arabidopsis thaliana. J. Mol. Biol. 187, 169–183.CrossRefGoogle Scholar
  50. Ribaut, J.M., Hoisington, D.A., Deutsch, J.A., Jiang, C. and Gonzalez-de-Leon, D. 1996. Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor. Appl. Genet 92, 905–914.CrossRefGoogle Scholar
  51. Ribaut, J.M., Jiang, C., Gonzalez-de-Leon, D., Edmeades, G.O. and Hoisington, D.A. 1997. Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor. Appl. Genet 94, 887896.Google Scholar
  52. Ruan, Y., Gilmore, J. and Conner, T. 1998. Towards Arabidopsis genome analysis–monitoring expression profiles of 1400 genes using cDNA micro-arrays. Plant J. 15, 821–833.PubMedCrossRefGoogle Scholar
  53. Richmond, T. and Somerville, S. 2000. Chasing the dream: plant EST micro-arrays. Curr. Opin. Plant Biol 3, 108–116.PubMedCrossRefGoogle Scholar
  54. Schachtmann, D.P., Reid, R.J. and Ayling, S.L. 1998. Phosphorus uptake by plants: from the soil to cells. Plant Physiol. 116, 447–453.CrossRefGoogle Scholar
  55. Schena, M., Shalon, D., Davis, R.W. and Brown, P.O. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA micro-array. Science 270, 467–470.PubMedCrossRefGoogle Scholar
  56. Schena, M. and Davis, R.W. 1999. “Genes, genomes, and chips”. In: DNA micro-arrays: a practical approach. New York, Oxford University Press, 205: 1–16.Google Scholar
  57. Shizuya, H., Birren, B., Kim, U-J., Mancino, V., Slepak, T., Tachiiri, Y. and Simon, M. 1992. Cloning and stable maintenance of 300 kilobase pair fragments of human DNA in Escherichia coli using a F-factor based vector. Proc. Natl. Acad. Sci. USA 89, 87948797.Google Scholar
  58. Smimoff, N. 1998. Plant resistance to environmental stress. Curr. Opin. Biotech 9, 214–219.CrossRefGoogle Scholar
  59. Sterky, F., Regan, S., Karlsson, J., Hertzberg, M., Rohde, A., Holmberg, A., Amini, B., Bhalerao, R., Larsson, M., Villarroel, R., van Montagu, M., Sandberg, G., Olsson, O., Teed, T.T., Boerjan, W., Gustafsson, P., Uhlen, M., Sundberg, B. and Lundeberg, J. 1998. Gene discovery in the wood-forming tissues of poplar-analysis of 5,692 expressed sequence tags. Proc. Natl. Acad. Sci. USA 95, 13330–13335.PubMedCrossRefGoogle Scholar
  60. Tanksley, S.D., Ganal, M.W. and Martin, G.B. 1995. Chromosome landing–a paradigm for map-based gene cloning in plants with large genomes. Trends Genet. 11, 63–68.PubMedCrossRefGoogle Scholar
  61. Terryn, N., Heijnen, L., De Keyser, A., van Asseldonck, M., De Clercq, R., Verbakel, H., Gielen, J., Zabeau, M., Villarroel, R., Jesse, T., Neyt, P., Hogers, R., van den Daele, H., Ardiles, W., Schueller, C., Mayer, K., Dehais, P., Rombauts, S., Van Montagu, M., Rouze, P. and Vos, P. 1999. Evidence for an ancient chromosomal duplication in Arabidopsis thaliana by sequencing and analyzing a 400-kb contig at the APETALA2 locus on chromosome 4. FEBS Lett. 445, 237–245.PubMedCrossRefGoogle Scholar
  62. Thomashow, M.F. 1999. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol 50, 571–599.PubMedCrossRefGoogle Scholar
  63. The C. elegans sequencing consortium 1998. Genome sequence of the nematode C. elegans a platform for investigating biology. Science 282, 2012–2018.Google Scholar
  64. Vos, P., Hogers, R., Bleeker, M., Reijans, M., Vandelee, T., Homes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. 1995. AFLP–a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414.PubMedCrossRefGoogle Scholar
  65. Vos, P., Simons, G., Jesse, T., Wijbrandi, J., Heinen, L„ Hogers, R., Frijters, A., Groenendijk, J., Diergaarde, P., Reijans, M., Fierensonstenk, J., Deboth, M., Peleman, J., Liharska, T., Hontelez, J. and Zabeau, M. 1998. The tomato MI-1 gene confers resistance to both root-knot nematodes and potato aphids. Nature Biotech. 16, 1365–1369.CrossRefGoogle Scholar
  66. Wodicka, L., Dong, H.L., Mittmann, M., Ho, M.H. and Lockhart, D.J. 1997. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotech. 15, 1359–1367.CrossRefGoogle Scholar
  67. Walbot, V. 1999. Genes, genomes, genomics. What can plant biologists expect from the 1998 National Science Foundation Plant Genome Research Program? Plant Physiol. 119, 1151–1155.PubMedCrossRefGoogle Scholar
  68. Yamamoto, K. and Sasaki, T. 1997. Large-scale EST sequencing in rice. Plant Mol. Biol 35, 135–144.PubMedCrossRefGoogle Scholar
  69. Zhao, J.M., Williams, C.C. and Last, R.L. 1998. Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor. Plant Cell 10, 359–370.PubMedGoogle Scholar
  70. Zhu, Y.L., Pilon-Smits, E.A.H., Jouanin, L. and Terry, N. 1999a. Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol. 119, 73–79.CrossRefGoogle Scholar
  71. Zhu, Y.L., Pilon-Smits, E.A.H., Tarun, A.S., Weber, S.U., Jouanin, L. and Terry, N. 1999b. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol. 121, 1169–1177.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Holger Hesse
    • 1
  • Rainer Höfgen
    • 2
  1. 1.Institut für Biologie, Angewandte GenetikFreie Universität BerlinBerlinGermany
  2. 2.Max-Planck-Institut für Molekulare PflanzenphysiologieGolmGermany

Personalised recommendations