Discrete-Time Wavelets

  • Miloš Doroslovački
Part of the Computational Imaging and Vision book series (CIVI, volume 19)


The intention of this paper is to provide an elementary introduction to the subject of discrete-time wavelets. It defines the discrete-time wavelets and reviews their properties in a systematic and consistent way. Different kinds of orthogonality between the wavelets are addressed and the corresponding sufficient and necessary conditions are derived. It is shown when discrete-time wavelets can be samples of continuous-time wavelets. The conditions for shift-invariance of discrete-time wavelet representations are given in detail. The appearance of two biorthogonal representation sets of discrete-time wavelets from the binary subband decomposition/reconstruction of signals is pointed out. When the number of different representation scales is finite, it is shown that in order to obtain the orthogonality between wavelets, the known requirement for wavelet generating filter can be relaxed.


Filter Bank Perfect Reconstruction Orthonormal Wavelet Reconstruction Filter Subband Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AFIT (1991). Applications of Wavelets to Signal Processing, Ohio. Wright-Patterson Air Force Base. Proc. of the AFIT Science &; Research Center Symposium.Google Scholar
  2. Auslander, L. and Gertner, I. (1990). Wide-band ambiguity function and a — x b group. In Auslander, L., Kailath, T., and Mitter, S., editors, Signal Processing, Part I: Signal Processing Theory. IMA vol. 22, Springer-Verlag, New York.Google Scholar
  3. Beylkin, G., Coifman, R., and Rokhlin, V. (1991). Fast wavelet transforms and numerical algorithms I. Comm. Pure Appl. Math., XLIV: 141–183.Google Scholar
  4. Beylkin, G., Coifman, R., and Rokhlin, V. (1992). Wavelets in numerical analysis. In Ruskai, M. B. et al., editors, Wavelets and Their Applications, pages 181–211. Jones and Bartlett Publishers.Google Scholar
  5. Combes, J. M., Grossmann, A., and Tchamitchian, P., editors (1989). Wavelets: Time- Frequency Methods and Phase Space, New York. Springer-Verlag. Proceedings of the International Conference, Marseille, France, December 1987.zbMATHGoogle Scholar
  6. Crochiere, R. E. and Rabiner, L. R. (1983). Multirate Digital Signal Processing. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  7. Crowe, J. A., Gibson, N. M., Woolfson, M. S., and Somekh, M. G. (1992). Wavelet transform as a potential tool for ECG analysis and compression. J. Biomed. Eng., 14:268–272.CrossRefGoogle Scholar
  8. Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, XLI:909— 996.Google Scholar
  9. Daubechies, I. (1990). The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory, 36(5):961–1005.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Daubechies, I. (1992). Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, no. 61. Society for Industrial and Applied Mathematics, Philadelphia,PA.CrossRefGoogle Scholar
  11. DeVore, R. A., Jawerth, B., and Lucier, B. J. (1992). Image compression through wavelet transform coding. IEEE Trans. Inform. Theory, 38 (2): 719–746. Part II: Special Issue on Wavelet Transform and Multiresolution Signal Analysis.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Edwards, R. E. (1979). Fourier Series: A Modern Introduction, volume 1. Springer-Verlag, New York, second edition.zbMATHCrossRefGoogle Scholar
  13. Evangelista, G. (1989). Orthogonal wavelet transforms and filter banks. In Proc. Twenty-Third Asilomar Conf. Circuits, Syst., Computers, volume 1, pages 489–492, Pacific Grove.Google Scholar
  14. Evangelista, G. and Barnes, C. W. (1990). Discrete-time wavelet transforms and their generalizations. In Proc. ISCAS-90, pages 2026–2029, New Orleans.Google Scholar
  15. Flandrin, P., Magand, F., and Zakharia, M. (1990). Generalized target description and wavelet decomposition. IEEE Trans. Acoust., Speech, Signal Processing, 38(2):350–352.MathSciNetCrossRefGoogle Scholar
  16. Frisch, M. and Messer, H. (1991). Detection of a transient signal of unknown scaling and arrival time using the discrete wavelet transform. In Proc. I CA SSP- 91, pages 1313–1316, Toronto.Google Scholar
  17. Grossmann, A. and Morlet, J. (1984). Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal., 15(4):723–736.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Herley, C. and Vetterli, M. (1991). Linear phase wavelets: Theory and design. In Proc. I CA SSP- 91, vol. 3, pages 2017–2020, Toronto.Google Scholar
  19. Herley, C. and Vetterli, M. (1993). Wavelets and recursive filter banks. IEEE Trans. Signal Processing, 41(8):2536–2556.zbMATHCrossRefGoogle Scholar
  20. Kadambe, S. and Boudreaux-Bartels, G. F. (1991). A comparison of wavelet functions for pitch detection of speech signals. In Proc. ICASSP-91, volume 1, pages 449–452, Toronto.Google Scholar
  21. Knowles, G. (1990). VLSI architecture for the discrete wavelet transform. Electronic Letters, 26(15):1184–1185.CrossRefGoogle Scholar
  22. Kolata, G. (1991). New technique stores images more efficiently. The New York Times. Google Scholar
  23. Lemarié, P. G. (1990) Analyse multi-échelles et ondelettes a support compact. In Lemarié, P. G., editor, Les Ondelettes en 1989, pages 26–38. Springer-Verlag, Berlin Heidelberg. Lecture Notes in Mathematics, vol. 1438.CrossRefGoogle Scholar
  24. Lewis, A. S. and Knowles, G. (1990). Video compression using 3D wavelet transforms. Electronic Letters, 26(6):396–398.CrossRefGoogle Scholar
  25. Maass, P. (1992). Wideband approximation and wavelet transform. In Grünbaum, F. A., Bernfeld, M., and Blahut, R. E., editors, Radar and Sonar: Part II, pages 83–88. Springer-Verlag, New York.CrossRefGoogle Scholar
  26. Mallat, S. G. (1989a). Multifrequency channel decompositions of images and wavelet models. Trans. on Acoust., Speech, and Signal Processing, 37(12):2091–2110.CrossRefGoogle Scholar
  27. Mallat, S. G. (1989b). Multiresolution approximations and wavelet orthonormal bases of L2(R). Trans. of AMS, 315(1):69–87.MathSciNetzbMATHGoogle Scholar
  28. Mallat, S. G. (1989c). A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell., 11(7):674–693.zbMATHCrossRefGoogle Scholar
  29. Meyer, Y. (1990a). Ondelettes et Opérateurs I: Ondelettes. Hermann, Paris.Google Scholar
  30. Meyer, Y. (1990b). Ondelettes et Opérateurs II: Opérateurs de CalderónZygmund. Hermann, Paris.Google Scholar
  31. Meyer, Y. (1990c). Ondelettes, filtres miroirs en quadrature et traitement numérique de l’image. In Lemarié, P. G., editor, Les Ondelettes en 1989, pages 14–25. Springer-Verlag, Berlin Heidelberg. Lecture Notes in Mathematics, vol. 1438.CrossRefGoogle Scholar
  32. Morlet, J., Arens, G., Fourgeau, E., and Giard, D. (1982). Wave propagation and sampling theory. Geophysics, 47(2):203–236.CrossRefGoogle Scholar
  33. Oppenheim, A. V. and Schafer, R. W. (1975). Digital Signal Processing. Prentice-Hall, Englwood Cliffs, NJ.Google Scholar
  34. Rioul, O. (1993). A discrete-time multiresolution theory. IEEE Trans. Signal Processing, 41(8):2591–2606.zbMATHCrossRefGoogle Scholar
  35. Rioul, O. and Vetterli, M. (1991). Wavelets and signal processing. IEEE Signal Processing Mag., 8(4):14–38.CrossRefGoogle Scholar
  36. Shensa, M. J. (1992). The discrete wavelet transform: Wedding the a trous and Mallat algorithms. IEEE Trans. Signal Processing, 40(10): 2464–2482.zbMATHCrossRefGoogle Scholar
  37. Simoncelli, E. P., Freeman, W. F., Adelson, E. H., and Heeger, D. J. (1992). Shiftable multiscale transform. IEEE Trans. Inform. Theory, 38 (2):587–607. Part II: Special Issue on Wavelet Transform and Multiresolution Signal Analysis.MathSciNetCrossRefGoogle Scholar
  38. Smith, M. and Barnwell, T. P. (1986). Exact reconstruction techniques for tree-structured subband coders. IEEE Trans. Acoust., Speech, Signal Processing, 34(3):434–441.CrossRefGoogle Scholar
  39. Soman, A. K. and Vaidyanathan, P. P. (1993). On orthonormal wavelets and paraunitary filter banks. IEEE Trans. Signal Processing, 41(3): 1170–1183.zbMATHCrossRefGoogle Scholar
  40. Strang, G. (1988). Linear Algebra and Its Applications. Harcourt Brace Jovanovich, Inc., San Diego, CA, third edition.Google Scholar
  41. Vetterli, M. (1992). Wavelets and filter banks for discrete-time signal processing. In Ruskai, M. B. et al., editors, Wavelets and Their Applications, pages 17–52. Jones and Bartlett Publishers, Boston, MA.Google Scholar
  42. Vetterli, M. and Herley, C. (1990). Wavelets and filter banks: Relationships and new results. In Proc. ICASSP-90, pages 1723–1726, Albuquerque.Google Scholar
  43. Vetterli, M. and Herley, C. (1992). Wavelets and filter banks: Theory and design. IEEE Trans. Signal Processing, 40(9):2207–2232.zbMATHCrossRefGoogle Scholar
  44. Wornell, G. W. and Oppenheim, A. V. (1992). Estimation of fractal signals from noisy measurements using wavelets. IEEE Trans. Signal Processing, 40(3):611–623.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Miloš Doroslovački
    • 1
  1. 1.Department of Electrical and Computer EngineeringThe George Washington UniversityWashintonUSA

Personalised recommendations