Skip to main content

Part of the book series: Water Science and Technology Library ((WSTL,volume 38))

  • 386 Accesses

Abstract

Little attention has been paid to the dependence of distributed parameter simulations on the resolution of the raster array or the triangular irregular network (TIN). Further, as these models are calibrated at one resolution, the question remains whether the calibrated parameters may be used without adjustment at larger cell sizes. This chapter identifies a scaling relationship of the drainage network derived at one resolution to those obtained at larger resolutions. Implicit in the discharge-scaling relationship is the fractal dimension of the drainage network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang, K. and Tsai, B. (1991). “The effect of DEM resolution on slope and aspect mapping.” Cartography and Geographic Information Systems, 18 (1), pp. 69–77.

    Article  Google Scholar 

  2. Farajalla, N. S. and Vieux, B. E. (1995). “Capturing the essential spatial variability in distributed hydrologic modeling: Infiltration parameters.” Journal of Hydrological Processes, 8 (1), pp. 55–68

    Article  Google Scholar 

  3. Fern, A., Musavi, M. T., and Miranda, J. (1998). “Automatic extraction of drainage network from digital terrain elevation data: A local network approach.” Transactions on Geoscience and Remote Sensing, 36 (3), pp. 1007–1015

    Article  Google Scholar 

  4. Freeman, T. G. (1991). “Calculating catchment area with divergent flow based on a regular grid.” Computers & Geosciences, 17 (3), pp. 413–422

    Article  Google Scholar 

  5. Garbrecht, J. and Shen, H. W. (1988). “The physical framework of the dependence between channel flow hydrographs and drainage network morphometry.” Hydrological Processes, 2, pp. 337–355

    Article  Google Scholar 

  6. Goodchild, M. F. (1980). “Fractals and the Accuracy of Geographical Measures.” Mathematical Geology, 12 (2), pp. 85

    Article  Google Scholar 

  7. Goodchild, M. F. and Mark, D. M. (1987). “The Fractal Nature of Geographic Phenomena.” Annals of the Association of American Geographers, 77(2), pp.265–278

    Article  Google Scholar 

  8. Hjelmfelt, A. T. jr. (1988). “Fractals and the RiveELength Catchment-Area Ratio.” Water Resources Bulletin, 24(2), April, pp.455–459

    Article  Google Scholar 

  9. Huang, J. and Turcotte, D. L. (1989). “Fractal mapping of digitized images: Application to the topography of Arizona and comparisons with synthetic images.” Journal of Geophysical Research, 94(B6), June, pp.7491–7495

    Article  Google Scholar 

  10. Hutchinson, M. F. (1989). “A New Procedure for Gridding Elevation and Stream Line Data with Automated Removal of Spurious Pits.” Journal of Hydrology, 106, pp. 211–232

    Article  Google Scholar 

  11. Jenson, S. K. (1984). Automated derivation ¢’hydrologic basin characteristics from digital elevation model data. U.S.Geol.Survey, Nov. 15.

    Google Scholar 

  12. Jenson, S. K. (1991). “Applications of Hydrologic Information Automatically Extracted from Digital Elevation Models.” In:Analysis and Distributed Modeling in Hydrology. Eds. Beven, K. J. and Moore, I. D. Terrain. John Wiley and Sons, Chicester, U.K. pp. 35–48

    Google Scholar 

  13. Jenson, S. K. and Dominique, J. O. (1988). “Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis.” Photogrammetric Engineering and Remote Sensing 54 (11), pp. 1593–1600

    Google Scholar 

  14. La Barbera, P. L. and Rosso, R. (1989). “On the fractal dimension of stream networks.” Water Resources Research 25 (4), pp. 735–741

    Article  Google Scholar 

  15. Lee, J and Chu, C-J. (1996). “Spatial structures of digitial terrain models and hydrological feature extraction” IAHS Publ, No.235

    Google Scholar 

  16. Lee, J, Snyder, K., and Fisher, P. F. (1992). “Modeling the effect of data errors on feature extraction from digital elevation models.” Photogrammetric Engineering and Remote Sensing, 58, pp. 1461–1467

    Google Scholar 

  17. Martz, L. W. and Grabrecht, J. (1992). “Numerical definition of drainage network and subcatchment areas from digital elevation models.” Computers & Geosciences 18(6), pp.747–761

    Google Scholar 

  18. Moore, I. D. and Grayson, R. B. (1991). “Terrain-based catchment partitioning and runoff prediction using vector elevation data.” Water Resources Research, 27(6), June, pp.1177–1191

    Article  Google Scholar 

  19. O’Callaghan, J. F. and Mark, D. M. (1984). “The extraction of drainage networks from digital elevation data.” Computer vision, graphics and image processing 28, pp. 323–344

    Article  Google Scholar 

  20. Qian, J., Ehrich, W., and Campbell, J. B. (1990). “DNESYS -An expert system for automatic extraction of drainage networks from digital elevation data.” IEEE Trans. Geosci. Remote Sensing, 28, pp. 29–44

    Article  Google Scholar 

  21. Quinn, P., Beven, K., Chevallier, P., and Planchon, O. (1991). “The Prediction of Hillslope Flow Paths for Distributed Hydrological Modeling using Digital Terrain Models.” In: Terrain Analysis and Distributed Modeling in Hydrology. Eds. Beven, K. J. and Moore, I. D. John Wiley and Sons, Chichester, U.K. pp. 63–63

    Google Scholar 

  22. Robert, A. and Roy, A. G. (1990). “On the fractal interpretation of the mainstream length-drainage area relationship.” Water Resources Research, 26(5), May, pp.839–842

    Google Scholar 

  23. Tarboton, D. G., Bras, R. L., and Iturbe, I. R. (1988). “The fractal nature of river networks.” Water Resources Research 24 (8), pp. 1317–1322

    Article  Google Scholar 

  24. Tarboton, D. G., Bras, R. L., and Iturbe, I. R. (1989). “Scaling and elevation in river networks.” Water Resources Research 25 (9), pp. 2037–2051

    Article  Google Scholar 

  25. Tarboton, D. G., Bras, R. L., and Iturbe, I. R. (1991). “On the extraction of channel networks from digital elevation data.” In: Terrain Analysis and Distributed Modeling in Hydrology. Eds. Beven, K. J. and Moore, I. D. John Wiley, New York. pp. 85–104

    Google Scholar 

  26. Vieux, B. E. (1988). Finite Element Analysis of Hydrologic Response Areas Using Geographic Information Systems. Department of Agricultural Engineering, Michigan State University. A dissertation submitted in partial fulfillment for the degree of Doctor of Philosophy.

    Google Scholar 

  27. Vieux, B. E. (1993). “DEM Aggregation and Smoothing Effects on Surface Runoff Modeling” ASCE, J. of Computing in civil Engineering, Special Issue on Geographic Information Analysis., 7 (3), pp. 310–338

    Article  Google Scholar 

  28. Vieux, B. E. and Farajalla, N. S. (1994). “Capturing the Essential Spatial Variability in Distributed Hydrological Modeling: Hydraulic Roughness.” Hydrological Processes, 8, pp. 221–236

    Article  Google Scholar 

  29. Vieux, B. E. and Needham, S. (1993). “Nonpoint Pollution Model Sensitivity to Grid-Cell Size.” J. of Water Resources Planning and Management, 119(2), March/April, pp.141–157

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vieux, B.E. (2001). Drainage Network and Topography. In: Distributed Hydrologic Modeling Using GIS. Water Science and Technology Library, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9710-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9710-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-9712-8

  • Online ISBN: 978-94-015-9710-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics