Cytokines and Costimulatory Molecules: Positive and Negative Regulation of the Immune Response to Cryptococcus Neoformans

  • Anna Vecchiarelli


Cytokines are small proteins or glycoproteins that transmit information from one cell to another. Most cells in the body secrete and respond to cytokines and their effects have been described on a myriad of cellular functions. Cytokine interactions may not be linear, thus making the system extremely intricate and with unpredictable features. Therefore, each model of disease may be unique, with its own mechanism of autoregulation dictated by positive and negative feedback involving cytokines and costimulatory molecules. The emergence of some cytokines over others in the course of Cryptococcus neoformans infection may characterize a positive or negative outcome of cryptococcosis. Much less is known about the influence of costimulatory molecules in regulating C. neoformans immune response. The available information indicates a critical role for proinflammatory cytokines such as tumor necrosis factor a and interleukin 12 (IL-12). The positive role of interferon γ in infected tissue as an inducer of antimicrobial function of innate immune cells and as positive feedback for IL-12 induction appears to be indisputable. In vitro studies indicate that costimulatory molecule expression appears to be regulated on antigen-presenting cells by C. neoformans and increased expression of B7-1 and CD40 on these cells may promote a protective response. These studies await confirmation in an in vivo system. The interplay between cytokines and costimulatory molecules has been scarcely explored and additional details are needed to better understand how they convey positive and negative information to immune cells in response to C. neoformans.

Key words

Cryptococcus neoformans cytokines costimulatory molecules. 

Abbreviations used


antigen-presenting cell


CD40 ligand








monoclonal antibody


natural killer


nitric oxide


peripheral blood mononuclear cells


T helper


tumor necrosis factor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blackstock R., Buchanan K. L., Adesina A. M. and Murphy J. W. (1999): Differential regulation of immune response by highly and weakly virulent Cryptococcus neoformans isolates. Infect. Immun., 67, 3601 – 3609.PubMedGoogle Scholar
  2. Casadevall A. (1995): Antibody immunity and invasive fungal infections. Infect. Immun., 63, 4211 – 4218.PubMedGoogle Scholar
  3. Casadevall A., Cleare W., Feldmesser M., Glatman-Freedman A., Goldman D. L., Kozel T. R., Lendvai N., Mukherjee J., Pirofski L. A., Rivera J., Rosas A. L., Scharff M. D., Valadon P., Westin K. and Zhong Z. (1998): Characterization of a murine monoclonal antibody to Cryptococcus neoformans polysaccharide that is a candidate for human therapeutic studies. Antimicrob. Agents Chemother., 42, 1437 – 1446.PubMedGoogle Scholar
  4. Casadevall A. and Perfect J. R. (1998): Cryptococcus neoformans. American Society for Microbiology Press, New York, 272 – 282.Google Scholar
  5. Clumeck N., Sonnet J., Taelman H., Mascart-Lemone F., De Bruyere M., Vandeperre R, Dasnoy J., Marcelis L., Lamy M., Jonas C., Eyckmans L., Noel H., Vanhaeverbeek M. and Butzler J. P. (1984): Acquired immunodeficiency syndrome in African patients. N. Engl. J. Med., 310, 492 – 497.PubMedCrossRefGoogle Scholar
  6. Collins H. L. and Bancroft G. J. (1992): Cytokine enhancement of complement-dependent phagocytosis by macrophages: synergy of tumor necrosis-alpha and granulocyte-macrophage colony stimulating factor for phagocytosis of Cryptococcus neoformans. Eur. J. Immunol., 22, 1447 – 1454.PubMedCrossRefGoogle Scholar
  7. Cross C. E. and Bancroft G. J. (1995): Ingestion of acapsular Cryptococcus neoformans occurs via mannose and beta-glucan receptors, resulting in cytokine production and increased phagocytosis of the encapsulated form. Infect. Immun., 63, 2604 – 2611.PubMedGoogle Scholar
  8. Cross C. E., Collins H. L. and Bancroft G. J. (1997): CR3-dependent phagocytosis by murine macrophages: different cytokines regulate ingestion of a defined CR3 ligand and complement-opsonized Cryptococcus neoformans. Immunology, 91, 289 – 296.PubMedCrossRefGoogle Scholar
  9. Decken K., Köhler G., Palmer-Lehmann K., Wunderlin A., Mattner F., Magram J., Gately M. K. and Alber G. (1998): Interleukin-12 is essential for a protective Th1 response in mice infected with Cryptococcus neoformans. Infect. Immun., 66, 4994 – 5000.PubMedGoogle Scholar
  10. De Shaw M. and Pirofski L. A. (1995): Antibodies to the Cryptococcus neoformans capsular glucuronoxylomannan are ubiquitous in serum from HIV and HIV- individuals. Clin. Exp. Immunol., 99, 425 – 432.Google Scholar
  11. Diamond R. D. and Bennet J. E. (1974): Prognostic factors in cryptococcal meningitis. A study in 111 cases. Ann. Intern. Med., 80, 176 – 181.PubMedGoogle Scholar
  12. Dinarello C. A. (1999): Interleukin-18. Methods, 19, 121 – 132.CrossRefGoogle Scholar
  13. Feldmesser M. and Casadevall A. (1997): Effect of serum IgGI to Cryptococcus neofonnans glucuronoxylomannan on murine pulmonary infection. J. Immunol., 158, 790 – 799.PubMedGoogle Scholar
  14. Gallis H. A., Berman R. A., Cate T. R., Hamilton J. D., Gunnells J. C. and Stickel D. L. (1975): Fungal infection following renal transplantation. Arch. Intern. Med., 135, 1163 – 1172.PubMedCrossRefGoogle Scholar
  15. Goldman D. L., Lee S. C. and Casadevall A. (1995): Tissue localization of Cryptococcus neofonnans glucuronoxylomannan in the presence and absence of specific antibody. Infect. Immun., 63, 3448 – 3453.PubMedGoogle Scholar
  16. Gordon M. A. and Casadevall A. (1995): Serum therapy of cryptococcal meningitis. Clin. Infect. Dis., 21, 1477 – 1479.PubMedCrossRefGoogle Scholar
  17. Harrison T. S. and Levitz S. M. (1996): Role of IL-12 in peripheral blood mononuclear cell responses to fungi in persons with and without HIV infection. J. Immunol., 156, 4492 – 4497.PubMedGoogle Scholar
  18. Harrison T. S. and Levitz S. M. (1997): Priming with IFN-y restores deficient IL-12 production by peripheral blood mononuclear cells from HIV-seropositive donors. J. Immunol., 158, 459 – 463.PubMedGoogle Scholar
  19. Hoag K. A., Lipscomb M. F., Izzo A. A. and Street N. E. (1997): IL-12 and IFN-gamma are required for initiating the protective Thl response to pulmonary cryptococcosis in resistant C. B-17 mice. Am. J. Respir. C.ll Mol. Biol., 17, 733 – 739.Google Scholar
  20. Huffnagle G. B. (1996): Role of cytokines in T cell immunity to a pulmonary Cryptococcus neoformans infection. Biol. Signals, 5, 215 – 222.PubMedCrossRefGoogle Scholar
  21. Huffnagle G. B., Boyd M. B., Street N. E. and Lipscomb M. F. (1998): IL-5 is required for eosinophil recruitment, crystal deposition, and mononuclear cell recruitment during a pulmonary Cryptococcus neoformans infection in genetically susceptible mice (C57BL/6). J. Immunol., 160, 2393 – 2400.PubMedGoogle Scholar
  22. Huffnagle G. B., Chen G. H., Curtis J. L., McDonald R. A., Strieter R. M. and Toews G. B. (1995): Down-regulation of the afferent phase of T cell-mediated pulmonary inflammation and immunity by a high melanin-producing strain of Cryptococcus neoformans. J. Immunol., 155, 3507 – 3516.PubMedGoogle Scholar
  23. Huffnagle G. B. and McNeil L. K. (1999): Dissemination of C. neofonnans to the central nervous system: role of chemokines, Thl immunity and leukocyte recruitment. J. Neurovirol., 5, 76 – 81.PubMedCrossRefGoogle Scholar
  24. Huffnagle G. B., Toews G. B., Burdick M. D., Boyd M. B., McAllister K. S., McDonald R. A., Kunkel S. L. and Strieter R. M. (1996): Afferent phase production of TNF-alpha is required for the development of protective T cell immunity to Cryptococcus neoformans. J. Immunol., 157, 4529 – 4536.PubMedGoogle Scholar
  25. John G. T., Mathew M., Snehalatha E., Anandi V., Date A., Jacob C. K. and Shastry J. C. M. (1994): Cryptococcosis in renal allograft recipients. Transplantation, 58, 855 – 856.PubMedGoogle Scholar
  26. Kawakami K., Qifeng X., Tohyama M., Qureshi M. H. and Saito A. (1996a): Contribution of tumor necrosis factor-alpha (TNF-alpha) in host defence mechanism against Cryptococcus neoformans. Clin. Exp. Immunol., 106, 468 – 474.PubMedCrossRefGoogle Scholar
  27. Kawakami K., Qureshi M. H., Koguchi Y., Nakajima K. and Saito A. (1999a): Differential effect of Cryptococcus neoformans on the production of IL-12 p40 and IL-10 by murine macrophages stimulated with lipopolysaccharide and gamma interferon. FEMS Microbiol. Lett., 175, 87 – 94.Google Scholar
  28. Kawakami K., Qureshi M. H., Koguchi Y., Zhang T., Okamura H., Kurimoto M. and Saito A. (1999b): Role of TNF-alpha in the induction of fungicidal activity of mouse peritoneal exudates against Cryptococcus neoformans by IL-12 and IL-18. Cell. Immunol., 193, 9 – 16.PubMedCrossRefGoogle Scholar
  29. Kawakami K., Qureshi M. H., Zhang T., Koguki Y, Shibuya K., Naoe S. and Saito A. (1999c): Interferon-y (IFN-y)-dependent protection and synthesis of chemoattractants for mononuclear leucocytes caused by IL-12 in the lungs of mice infected with Cryptococcus neoformans. Clin. Exp. Immunol., 117, 113 – 122.PubMedCrossRefGoogle Scholar
  30. Kawakami K., Qureshi M. H., Zhang T., Koguki Y., Xie Q., Kurimoto M. and Saito A. (1999d): Interleukin-4 weakens host resistance to pulmonary and disseminated cryptococcal infection caused by combined treatment with interferon-gamma-inducing cytokines. Cell. Immunol., 197, 55 – 61.PubMedCrossRefGoogle Scholar
  31. Kawakami K., Qureshi M. H., Zhang T., Okamura H., Kurimoto M. and Saito A. (1997a): IL-18 protects mice against pulmonary and disseminated infection with Cryptococcus neoformans by inducing IFN-y production. J. Immunol., 159, 5528 – 5534.PubMedGoogle Scholar
  32. Kawakami K., Tohyama M., Qifeng X. and Saito A. (1997b): Expression of cytokines and inducible nitric oxide synthase mRNA in the lung of mice infected with Cryptococcus neoformans: effects of interleukin-12. Infect. Immun., 65, 1307 – 1312.PubMedGoogle Scholar
  33. Kawakami K., Tohyama M., Xie Q. and Saito A. (1996b): IL-12 protects mice against pulmonary and disseminated infection caused by Cryptococcus neoformans. Clin. Exp. Immunol., 104, 208 – 214.PubMedCrossRefGoogle Scholar
  34. Kozel T. R., Wilson M. A. and Murphy J. W. (1991): Early events in initiation of alternative complement pathway activation by the capsule of Cryptococcus neoformans. Infect. Immun., 59, 3101 – 3110.PubMedGoogle Scholar
  35. Kozel T. R., Wilson M. A. and Welch W. H. (1992): Kinetic analysis of the amplification phase for activation and binding of C3 to encapsulated and nonencapsulated Cryptococcus neoformans. Infect. Immun., 60, 3122 – 3127.PubMedGoogle Scholar
  36. Levitz S. M. and North E. A. (1996): Gamma interferon gene expression and release in human lymphocytes directly activated by Cryptococcus neoformans and Candida albicans. Infect. Immun., 64, 1595 – 1599.PubMedGoogle Scholar
  37. Levitz S. M., Tabuni A., Kornfeld H., Reardon C. C. and Golenbock D. T. (1994): Production of tumor necrosis factor alpha in human leukocytes stimulated by Cryptococcus neoformans. Infect. Immun., 62, 1975 – 1981.PubMedGoogle Scholar
  38. Levitz S. M., Tabuni A., Nong S. H. and Golenbock D. T. (1996): Effects of interleukin-10 on human peripheral blood mononuclear cell responses to Cryptococcus neoformans, Candida albicans, and lipopolysaccharide. Infect. Immun., 64, 945 – 951.PubMedGoogle Scholar
  39. Li R. K. and Mitchell T. G. (1997): Induction of interleukin-6 mRNA in rat alveolar macrophages by in vitro exposure to both Cryptococcus neoformans and anti-C. neoformans antiserum. J. Med. Vet. Mycol., 35, 327 – 334.PubMedCrossRefGoogle Scholar
  40. Lortholary O., Improvisi L., Rayane N., Gray F., Fittinf C., Cavaillon J. M. and Dromer F. (1999): Cytokine profiles of AIDS patients are similar to those of mice with disseminated Cryptococcus neoformans infection. Infect. Immun., 67, 6314–6320.Google Scholar
  41. Lovchik J. A., Lyons C. R. and Lipscomb M. F. (1995): A role for gamma interferon-induced nitric oxide in pulmonary clearance of Cryptococcus neoformans. Am. J. Respir. Cell Mol. Biol., 13, 116 – 124.PubMedGoogle Scholar
  42. Mody C. H., Spurrell J. C. and Wood C. J. (1998): Interleukin-15 induces antimicrobial activity after release by Cryptococcus neoformans-stimulated monocytes. J. Infect. Dis., 178, 803 – 814.PubMedCrossRefGoogle Scholar
  43. Monari C., Kozel T. R., Casadevall A., Pietrella D., Palazzetti B. and Vecchiarelli A. (1999): B7 costimulatory ligand regulates development of the T-cell response to Cryptococcus neoformans. Immunology, 98, 27 – 35.PubMedCrossRefGoogle Scholar
  44. Monari C., Retini C., Palazzetti B., Bistoni F. and Vecchiarelli A. (1997): Regulatory role of exogenous IL-10 in the development of immune response versus Cryptococcus neoformans. Clin. Exp. Immunol., 109, 242 – 247.PubMedCrossRefGoogle Scholar
  45. Morel P. A. and Oriss T. B. (1998): Crossregulation between Thl and Th2 cells. Crit. Rev. Immunol., 18, 275 – 303.PubMedCrossRefGoogle Scholar
  46. Mukherjee S., Lee S., Mukherjee J., Scharff M. D. and Casadevall A. (1994): Monoclonal antibodies to Cryptococcus neoformans capsular polysaccharide modify the course of intravenous infection in mice. Infect. Immun., 62, 1079 – 1088.PubMedGoogle Scholar
  47. Murphy J. W. and McGaba T. (1999): Blockade of CTLA-4, costimulatory molecule on the surface of T cells, enhances the protective cell-mediated immune response against Cryptococcus neoformans. In Cryptococcus and Cryptococcosis, 4h International Conference, September 12–16, 1999. Abstract n. I. 20, p. 50.Google Scholar
  48. Murphy J. W., Zhou A. and Wong S. C. (1997): Direct interactions of human natural killer cells with Cryptococcus neoformans inhibit granulocyte-macrophage colony-stimulating factor and tumor necrosis factor alpha production. Infect. Immun., 65, 4564 – 4571.PubMedGoogle Scholar
  49. Rayhane N., Lortholary O., Fitting C., Callabert J., Huerre M., Dromer F. and Cavaillon J. M. (1999): Enhanced sensitivity of tumor necrosis factor/lymphotoxin-alpha-deficient mice to Cryptococcus neoformans infection despite increased levels of nitrite/nitrate, interferon–gamma, and interleukin-12. J. Infect. Dis., 180, 1637 – 1647.PubMedCrossRefGoogle Scholar
  50. Retini C., Casadevall A., Pietrella D., Monari C., Palazzetti B. and Vecchiarelli A. (1999): Specific-activated T cells regulate IL-12 production by human monocytes stimulated with Cryptococcus neoformans. J. Immunol., 162, 1618 – 1623.PubMedGoogle Scholar
  51. Retini C., Vecchiarelli A., Monari C., Tascini C., Bistoni F. and Kozel T. R. (1996): Capsular polysaccharide of Cryptococcus neoformans induces proinflammatory cytokine release by human neutrophile. Infect. Immun., 64, 2897 – 2903.PubMedGoogle Scholar
  52. Roseff S. A. and Levitz S. M. (1993): Effect of endothelial cells on phagocyte-mediated anticryptococcal activity. Infect. Immun., 61, 3818 – 3824.PubMedGoogle Scholar
  53. Syme R. M.. Bruno T. F., Kozel T. R. and Mody C. H. (1999): The capsule of Cryptococcus neoformans reduces T-lymphocyte proliferation by reducing phagocytosis, which can be restored with anticapsular antibody. Infect. Immun., 67, 4620 – 4627.Google Scholar
  54. Taelman H., Clerinx J., Kagame A., Batungwanayo J., Nyirabareja A. and Bogaerts J. (1991): Cryptococcosis, another growing burden for central Africa. Lancet, 338, 761.PubMedCrossRefGoogle Scholar
  55. Trinchieri G. (1998): Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv. Immunol., 70, 83 – 243.PubMedCrossRefGoogle Scholar
  56. Vecchiarelli A. and Casadevall A. (1998): Antibody-mediated effects against Cryptococcus neoformans: evidence for interdependency and collaboration between humoral and cellular immunity. Res. Immunol., 149, 321 - 331.PubMedCrossRefGoogle Scholar
  57. Vecchiarelli A., Monari C., Retini C., Pietrella D., Palazzetti B., Pitzurra L. and Casadevall A. (1998a): Cryptococcus neoformans differently regulates B7-1 (CD80) and B7-2 (CD86) expression on human monocytes. Eur. J. Immunol., 28, 114 – 121.Google Scholar
  58. Vecchiarelli A., Retini C., Casadevall A., Monari C., Pietrella D. and Kozel T. R. (1998b): Involvement of C3a and C5a in interleukin-8 secretion by human polymorphonuclear cells in response to capsular material of Cryptococcus neoformans. Infect. Immun., 66, 4324 – 4330.PubMedGoogle Scholar
  59. Vecchiarelli A., Retini C., Monari C. and Casadevall A. (1998c): Specific antibody to Cryptococcus neoformans alters human leukocyte cytokine synthesis and promotes T-cell proliferation. Infect. Immun., 66, 1244 – 1247.PubMedGoogle Scholar
  60. Vecchiarelli A., Retini C., Monari C., Tascini C., Bistoni E and Kozel T. R. (1996): Purified capsular polysaccharide of Cryptococcus neoformans induces interleukin-10 secretion by human monocytes. Infect. Immun., 64, 2846 – 2849.PubMedGoogle Scholar
  61. Vecchiarelli A., Retini C., Pietrella D., Monari C., Tascini C., Beccari T. and Kozel T. R. (1995): Down-regulation by cryptococcal polysaccharide of tumor necrosis factor alpha and interleukin-113 secretion from human monocytes. Infect. Immun., 63, 2919 - 2923.PubMedGoogle Scholar
  62. Walenkamp A. M., Chaka W. S., Verheul A. E, Vainshnav V. V., Cherniak R., Coenjaerts F. E. and Hoepelman I. M. (1999): Cryptococcus neoformans and its cell wall components induce similar cytokine profiles in human peripheral blood mononuclear cells despite differences in structure. FEMS Immunol. Med. Microbiol., 26, 309 – 318.Google Scholar
  63. Wilson M. A. and Kozel T. R. (1992): Contribution of antibody in normal human serum to early deposition of C3 onto encapsulated and nonencapsulated Cryptococcus neoformans. Infect. Immun., 60, 754 – 761.PubMedGoogle Scholar
  64. Yuan R., Casadevall A., Oh J. and Scharff M. D. (1997): T cells cooperate with passive antibody to modify Cryptococcus neoformans infection in mice. Proc. Natl. Acad. Sci. USA, 94, 2483 – 2488.PubMedCrossRefGoogle Scholar
  65. Zhang T., Kawakami K., Qureshi M. H., Okamura H., Kurimoto M. and Saito A. (1997): Interleukin-12 (IL-12) and IL-18 synergistically induce the fungicidal activity of murine peritoneal exudates cells against Cryptococcus neoformans through production of gamma interferon by natural killer cells. Infect. Immun., 65, 3594 – 3599.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Anna Vecchiarelli
    • 1
  1. 1.Microbiology Section, Department of Experimental Medicine and Biochemical SciencesUniversity of PerugiaPerugiaItaly

Personalised recommendations