Interleukin 15: Its Role in Inflammation and Immunity

  • Liyanage P. Perera


Interleukin 15 (IL-15) is a 14–15 kDa polypeptide that belongs to the 4 α-helix-bundle family of cytokines and was originally discovered due to its T cell proliferative activity. It utilizes the signal-transducing β/γ polypeptides of the IL-2 receptor complex, thus sharing many biological activities with IL-2, in addition to its high-affinity private receptor subunit IL-15Rα. Accumulating evidence indicates that the biological relevance of IL-15 may not solely be confined to T lymphocytes, but to a variety of cell populations within the immune system as well as outside the immune system of the host. The expression of both IL-15 and its high-affinity receptor component, IL-15Rα, are readily demonstrable in a wide variety of tissues and appear to be augmented in response to environmental/stress stimuli and infectious agents. There is increasing evidence to suggest that IL-15 may play an important role in protective immune responses, allograft rejection and the pathogenesis of autoimmune diseases, where mononuclear cell infiltration is a hallmark feature. Herein, the effects of IL-15 on cells associated with host defense, immunity and inflammation are reviewed and support a central role for this cytokine in orchestrating multiple aspects of effector functions in immunity and inflammation.

Key words

interleukin 15 natural killer cells monocytes dendritic cells. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agostini C., Trentin L., Facco M., Sancetta R., Cerutti A., Tassinari C., Cimarosto L., Adami F., Cipriani A., Zambello R. and Semenzato G. (1996): Role of IL-15, IL-2, and their receptors in the development of T cell alveolitis in pulmonary sarcoidosis. J. Immunol., 157, 910–918.PubMedGoogle Scholar
  2. Anderson D. M., Johnson L., Glaccum M. B., Copeland N. G., Gilbert D. J., Jenkins N. A., Valentine V., Kirstein M. N., Shapiro D. N., Morris S. W., Grabstein K. and Cosman D. (1995): Chromosomal assignment and genomic structure of IL-15. Genomics, 25, 701–706.PubMedCrossRefGoogle Scholar
  3. Armitage R. J., Macduff B. M., Eisenman J., Paxton R. and Grabstein K. H. (1995): IL-15 has stimulatory activity for the induction of B cell proliferation and differentiation. J. Immunol., 154, 483–490.Google Scholar
  4. Azimi N., Brown K., Bamford R. N., Tagaya Y., Siebenlist U. and Waldmann T. A. (1998): Human T cell lymphotropic virus type I Tax protein trans-activates interleukin 15 gene transcription through an NF-kappaB site. Proc. Natl. Acad. Sci. USA, 95, 2452–2457.PubMedCrossRefGoogle Scholar
  5. Baan C. C., Knoop C. J., Holweg C. T., van Gelder T., Metselaar H. J., Niesters H. G., Zondervan P. E., Balk A. H. and Weimar W. (1999): The macrophage-derived T-cell growth factor interleukin-15 is present in interleukin-2-independent rejection after clinical heart and liver transplantation. Transplant. Proc., 31, 2726–2728.PubMedCrossRefGoogle Scholar
  6. Badolato R., Ponzi A. N., Millesimo M., Notarangelo L. D. and Musso T. (1997): Interleukin-15 (IL-15) induces IL-8 and monocyte chemotactic protein 1 production in human monocytes. Blood, 90, 2804–2809.PubMedGoogle Scholar
  7. Bamford R. N., Battiata A. P., Burton J. D., Sharma H. and Waldmann T. A. (1996): Interleukin (IL) 15/IL-T production by the adult T-cell leukemia cell line HuT-102 is associated with a human T-cell lymphotrophic virus type I region/IL-15 fusion message that lacks many upstream AUGs that normally attenuates IL-15 mRNA translation. Proc. Natl. Acad. Sci. USA, 93, 2897–2902.PubMedCrossRefGoogle Scholar
  8. Bamford R. N., Grant A. J., Burton J. D., Peters C., Kurys G., Goldman C. K., Brennan J., Roessler E. and Waldmann T. A. (1994): The interleukin (IL) 2 receptor beta chain is shared by IL-2 and a cytokine, provisionally designated IL-T, that stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc. Natl. Acad. Sci. USA, 91, 4940–4944.PubMedCrossRefGoogle Scholar
  9. Bazan J. F. (1990): Structural design and molecular evolution of a cytokine receptor super-family. Proc. Natl. Acad. Sci. USA, 87, 6934–6938.PubMedCrossRefGoogle Scholar
  10. Bykovskaia S. N., Buffo M., Zhang H., Bunker M., Levitt M. L., Agha M., Marks S., Evans C., Ellis P., Shurin M. R. and Shogan J. (1999): The generation of human dendritic and NK cells from hemopoietic progenitors induced by interleukin-15. J. Leukoc. Biol., 66, 659–666.PubMedGoogle Scholar
  11. Canals A., Gasbarre L. C., Boyd P. C., Almeria S. and Zarlenga D. S. (1997): Cloning and expression of bovine interleukin-15: analysis and modulation of transcription by exogenous stimulation. J. Interferon Cytokine Res., 17, 473–480.PubMedCrossRefGoogle Scholar
  12. Canals A., Grimm D. R., Gasbarre L. C., Lunney J. K. and Zarlenga D. S. (1997): Molecular cloning of cDNA encoding porcine interleukin-15. Gene, 195, 337–339.PubMedCrossRefGoogle Scholar
  13. Candotti F., O’Shea J. J. and Villa A. (1998): Severe combined immune deficiencies due to defects of the common gamma chain-JAK3 signaling pathway. Springer Semin. Immunopathol., 19, 401–415.Google Scholar
  14. Cao X., Shores E. W., Hu-Li J., Anver M. R., Kelsall B. L., Russell S. M., Drago J., Noguchi M., Grinberg A., Bloom E. T., Paul W. E., Katz S. I., Love P. E. and Leonard W. J. (1995): Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity, 2, 223–238.PubMedCrossRefGoogle Scholar
  15. Carson W. E., Fehniger T. A., Haldar S., Eckhert K., Lindemann M. J., Lai C. F., Croce C. M., Baumann H. and Caligiuri M. A. (1998): A potential role for interleukin-15 in the regulation of human natural killer cell survival. Gastroenterology, 115, 1439–1445.CrossRefGoogle Scholar
  16. Carson W. E., Ross M. E., Baiocchi R. A., Marien M. J., Boiani N., Grabstein K. and Caligiuri M. A. (1995): Endogenous production of interleukin 15 by activated human monocytes is critical for optimal production of interferon-gamma by natural killer cells in vitro. J. Clin. Invest., 96, 2578–2582.PubMedCrossRefGoogle Scholar
  17. Chehimi J., Marshall J. D., Salvucci O., Frank I., Chehimi S., Kawecki S., Bacheller D., Rifat S. and Chouaib S. (1997): IL-15 enhances immune functions during HIV infection. J. Immunol., 158, 5978–5987.PubMedGoogle Scholar
  18. Cho B. K., Wang C., Sugawa S., Eisen H. N. and Chen J. (1999): Functional differences between memory and naive CD8 T cells. Proc. Natl. Acad. Sci. USA, 96, 2976–2981.PubMedCrossRefGoogle Scholar
  19. Choi K. D., Lillehoj H. S., Song K. D. and Han J. Y. (1999): Molecular and functional characterization of chicken IL-15. Dev. Comp. Immunol., 23, 165–177.PubMedCrossRefGoogle Scholar
  20. Chu C. L., Chen S. S., Wu T. S., Kuo S. C. and Liao N. S. (1999): Differential effects of IL-2 and IL-15 on the death and survival of activated TCR gamma delta+ intestinal intraepithelial lymphocytes. J. Immunol., 162, 1896–1903.PubMedGoogle Scholar
  21. Kakumu S., Okumura A., Ishikawa T., Yano M., Enomoto A., Nishimura H., Yoshioka K. and Davey R. T. jr., Chaitt D. G., Albert J. M., Piscitelli S. C., Kovacs J. A., Walker R. E., Falloon J., Polis M. A., Metcalf J. A., Masur H., Dewar R., Baseler M., Fyfe G., Giedlin M. A. and Lane H. C. (1999): A randomized trial of high-versus low-dose subcutaneous interleukin-2 outpatient therapy for early human immunodeficiency virus type 1 infection. J. Infect. Dis., 179, 849–858.Google Scholar
  22. Davis I. D. (1998): Cytokine therapy in metastatic renal cancer. N. Engl. J. Med., 339, 850–851.PubMedCrossRefGoogle Scholar
  23. Dirksen U., Asadi-Moghaddam K., Fuhrer M. and Burdach S. (1998): Defunct hematopoietic progenitor growth and heterogeneous immunological phenotypes in acquired aplastic anemia of childhood: identification of subsets with decreased hematopoietic progenitors and increased IL15 or IL10 production. Klin. Padiatr., 210, 167–172.PubMedCrossRefGoogle Scholar
  24. Di Santo J. P., Colucci F. and Guy-Grand D. (1998): Natural killer and T cells of innate and adaptive immunity: lymphoid compartments with different requirements for common gamma chain-dependent cytokines. Immunol. Rev., 165, 29–38.PubMedCrossRefGoogle Scholar
  25. Doherty T. M., Seder R. A. and Sher A. (1996): Induction and regulation of IL-15 expression in murine macrophages. J. Immunol., 156, 735–741.PubMedGoogle Scholar
  26. Ebert E. C. (1998): Interleukin 15 is a potent stimulant of intraepithelial lymphocytes. Gastroenterology, 115, 1439–1445.PubMedCrossRefGoogle Scholar
  27. Fawaz L. M., Sharif-Askari E. and Menezes J. (1999): Up-regulation of NK cytotoxic activi- ty via IL-15 induction by different viruses: a comparative study. J. Immunol., 163, 4473–4480.PubMedGoogle Scholar
  28. Giri J. G., Anderson D. M., Kumaki S., Park L. S., Grabstein K. H. and Cosman D. (1995a): IL-15, a novel T cell growth factor that shares activities and receptor components with IL-2. J. Leukoc. Biol., 57, 763–766.PubMedGoogle Scholar
  29. Giri J. G., Kumaki S., Ahdieh M., Friend D. J., Loomis A., Shanebeck K., DuBose R., Cosman D., Park L. S. and Anderson D. M. (1995b): Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor. EMBO J., 14, 3654–3663.PubMedGoogle Scholar
  30. Grabstein K. H., Eisenman J., Shanebeck K., Rauch C., Srinivasan S., Fung V., Beers C., Richardson J., Schoenborn M. A., Ahdieh M., Johnson L., Alderson M. R., Watson J. D., Anderson D. M. and Giri J. G. (1994): Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science, 264, 965–968.PubMedCrossRefGoogle Scholar
  31. Hirose K., Nishimura H., Matsuguchi T. and Yoshikai Y. (1999): Endogenous IL-15 might be responsible for early protection by natural killer cells against infection with an avirulent strain of Salmonella choleraesuis in mice. J. Leukoc. Biol., 66, 382–390.PubMedGoogle Scholar
  32. Hirose K., Suzuki H., Nishimura H., Mitani A., Washizu J., Matsuguchi T. and Yoshikai Y. (1998): Interleukin-15 may be responsible for early activation of intestinal intraepithelial lymphocytes after oral infection with Listeria monocytogenes in rats. Infect. Immun., 66, 5677–5683.PubMedGoogle Scholar
  33. Johnston J. A., Bacon C. M., Riedy M. C. and O’Shea J. J. (1996): Signaling by IL-2 and related cytokines: JAKs, STATs, and relationship to immunodeficiency. J. Leukoc. Biol., 60, 441–452.PubMedGoogle Scholar
  34. Kacani L., Stoiber H. and Dierich M. P. (1997): Role of IL-15 in HIV-1-associated hypergammaglobulinaemia. Clin. Exp. Immunol., 108, 14–18.PubMedCrossRefGoogle Scholar
  35. Yoshika Y. (1997): Serum levels of IL-10, IL-15 and soluble tumour necrosis factor-alpha (TNF-alpha) receptors in type C chronic liver disease. Clin. Exp. Immunol., 109, 458–463.PubMedCrossRefGoogle Scholar
  36. Kennedy M. K., Glaccum M., Brown S. N., Butz E. A., Viney J. L., Embers M., Matsuki N., Charrier K., Sedger L., Willis C. R., Brasel K., Mirrissey P. J., Stocking K., Schuh J. C., Joyce S. and Peschon J. J. (2000): Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med., 191, 771–780.PubMedCrossRefGoogle Scholar
  37. Kennedy M. K., Park L. S. and Paxton R. J. (1998): Interleukin-15. In Thomson A. (ed.): The cytokine handbook, 3rd ed. Academic Press, San Diego, California, USA, 443–464.Google Scholar
  38. Kirman I., Vainer B. and Nielsen O. H. (1998): Interleukin-15 and its role in chronic inflammatory diseases. Inflamm. Res., 47, 285–289.PubMedCrossRefGoogle Scholar
  39. Kuniyoshi J. S., Kuniyoshi C. J., Lim A. M., Wang F. Y., Bade E. R., Lau R., Thomas E. K. and Weber J. S. (1999): Dendritic cell secretion of IL-15 is induced by recombinant huCD40LT and augments the stimulation of antigen-specific cytolytic T cells. Cell. Immunol., 193, 48–58.PubMedCrossRefGoogle Scholar
  40. Lauw F. N., Simpson A. J., Prins J. M., Smith M. D., Kurimoto M., van Deventer S. J., Speelman P., Chaowagul W., White N. J. and van der Poll T. (1999): Elevated plasma concentrations of interferon (IFN)-gamma and the IFN-gamma-inducing cytokines interleukin (IL)-18, IL-12, and IL-15 in severe melioidosis. J. Infect. Dis., 180, 1878–1885.PubMedCrossRefGoogle Scholar
  41. Lodolce J. P., Boone D. L., Chai S., Swain R. E., Dassopoulos T., Trettin S. and Ma A. (1998): IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity, 9, 669–676.PubMedCrossRefGoogle Scholar
  42. Luzza E, Parrello T., Monteleone G., Sebkova L., Imeneo M., La Vecchia A., Maletta M., Docimo C. and Pallone E (1999): Changes in the mucosal expression of interleukin 15 in Helicobacter pylori-associated gastritis. FEMS Immunol. Med. Microbiol., 24, 233–238.Google Scholar
  43. Maeurer M., Seliger B., Trinder P., Gerdes J. and Seitzer U. (1999): Interleukin-15 in mycobacterial infection of antigen-presenting cells. Scand. J. Immunol., 50, 280–288.PubMedCrossRefGoogle Scholar
  44. McInnes I. B. and Liew F. Y. (1998): Interleukin 15: a proinflammatory role in rheumatoid arthritis synovitis. Immunol. Today, 19, 75–79.PubMedCrossRefGoogle Scholar
  45. Meazza R., Verdiani S., Biassoni R., Coppolecchia M., Gaggero A., Orengo A. M., Colombo M. P., Azzarone B. and Ferrini S. (1996): Identification of a novel interleukin-15 (IL-15) transcript isoform generated by alternative splicing in human small cell lung cancer cell lines. Oncogene, 12, 2187–2192.PubMedGoogle Scholar
  46. Mody C. H., Spurrell J. C. and Wood C. J. (1998): Interleukin-15 induces antimicrobial activity after release by Cryptococcus neoformans-stimulated monocytes. J. Infect. Dis., 178, 803–814.PubMedCrossRefGoogle Scholar
  47. Mrozek E., Anderson P. and Caligiuri M. A. (1996): Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood, 87, 2632–2640.PubMedGoogle Scholar
  48. Musso T., Calosso L., Zucca M., Millesimo M., Puliti M., Bulfone-Paus S., Merlino C., Savoia D., Cavallo R., Ponzi A. N. and Badolato R. (1998): Interleukin-15 activates proinflammatory and antimicrobial functions in polymorphonuclear cells. Infect. Immun., 66, 2640–2647.PubMedGoogle Scholar
  49. Musso T., Calosso L., Zucca M., Millesimo M., Ravarino D., Giovarelli M., Malavasi E, Ponzi A. N., Paus R. and Bulfone-Paus S. (1999): Human monocytes constitutively express membrane-bound, biologically active, and interferon-gamma-upregulated interleukin-15. Blood, 93, 3531–3539.PubMedGoogle Scholar
  50. Nishimura H., Yajima T., Naiki Y., Tsunobuchi H., Umemura M., Itano K., Matsuguchi T., Suzuki M., Ohashi P. S. and Yoshikai Y. (2000): Differential roles of interleukin 15 mRNA isoforms generated by alternative splicing in immune responses in vivo. J. Exp. Med., 191, 157–170.PubMedCrossRefGoogle Scholar
  51. Ogasawara K., Hida S., Azimi N., Tagaya Y., Sato T., Yokochi-Fukuda T., Waldmann T. A., Taniguchi T. and Taki S. (1998): Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature, 391, 700–703.PubMedCrossRefGoogle Scholar
  52. Ohteki T., Yoshida H., Matsuyama T., Duncan G. S., Mak T. W. and Ohashi P. S. (1998): The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1+ T cell receptor-alpha/beta+ (NK1+ T) cells, natural killer cells, and intestinal intraepithelial T cells. J. Exp. Med., 187, 967–972.PubMedCrossRefGoogle Scholar
  53. Onu A., Pohl T., Krause H. and Bulfone-Paus S. (1997): Regulation of IL-15 secretion via the leader peptide of two IL-15 isoforms. J. Immunol., 158, 255–262.PubMedGoogle Scholar
  54. Oppenheimer-Marks N., Brezinschek R. I., Mohamadzadeh M., Vita R. and Lipsky P. E. (1998): Interleukin 15 is produced by endothelial cells and increases the transendothelial migration of T cells in vitro and in the SCID mouse-human rheumatoid arthritis model in vivo. J. Clin. Invest., 101, 1261–1272.PubMedCrossRefGoogle Scholar
  55. Park Y. B., Kim D. S., Lee W. K., Suh C. H. and Lee S. K. (1999): Elevated serum interleukin-15 levels in systemic lupus erythematosus. Yonsei. Med. J., 40, 343–348.PubMedGoogle Scholar
  56. Pashenkov M., Mustafa M., Kivisakk P. and Link H. (1999): Levels of interleukin-l5-expressing blood mononuclear cells are elevated in multiple sclerosis. Scand. J. Immunol., 50, 302–308.PubMedCrossRefGoogle Scholar
  57. Pavlakis M., Strehlau J., Lipman M., Shapiro M., Maslinski W. and Strom T. B. (1996): Intragraft IL-15 transcripts are increased in human renal allograft rejection. Transplantation, 62, 543–545.PubMedCrossRefGoogle Scholar
  58. Perera L. P., Goldman C. K. and Waldmann T. A. (1999): IL-15 induces the expression of chemokines and their receptors in T lymphocytes. J. Immunol., 162, 2606–2612.PubMedGoogle Scholar
  59. Reinecker H. C., MacDermott R. P., Mirau S., Dignass A. and Podolsky D. K. (1996): Intestinal epithelial cells both express and respond to interleukin 15. Gastroenterology, 111, 1706–1713.PubMedCrossRefGoogle Scholar
  60. Ruchatz H., Leung B. P., Wei X. Q., McInnes I. B. and Liew F. Y. (1998): Soluble IL-15 receptor alpha-chain administration prevents murine collagen-induced arthritis: a role for IL-15 in development of antigen-induced immunopathology. J. Immunol., 160, 5654–5660.PubMedGoogle Scholar
  61. Sancho D., Yanez-Mo M., Tejedor R. and Sanchez-Madrid F. (1999): Activation of peripheral blood T cells by interaction and migration through endothelium: role of lymphocyte function antigen- 1/intercellular adhesion molecule-1 and interleukin-15. Blood, 93, 886–896.PubMedGoogle Scholar
  62. Sinkovics J. G. and Horvath J. C. (2000): Vaccination against human cancers. Int. J. Oncol., 16, 81–96.PubMedGoogle Scholar
  63. Sprent J., Zhang X., Sun S. and Tough D. (1999): T-cell turnover in vivo and the role of cytokines. Immunol. Lett., 65, 21–25.PubMedCrossRefGoogle Scholar
  64. Tagaya Y., Burton J. D., Miyamoto Y. and Waldmann T. A. (1996): Identification of a novel receptor/signal transduction pathway for IL-15/T in mast cells. EMBO J., 16, 4928–4939.Google Scholar
  65. Tagaya Y., Kurys G., Thies T. A., Losi J. M., Azimi N., Hanover J. A., Bamford R. N. and Waldmann T. A. (1997): Generation of secretable and nonsecretable interleukin 15 isoforms through alternate usage of signal peptides. Proc. Natl. Acad. Sci. USA, 94, 14444–14449.PubMedCrossRefGoogle Scholar
  66. Vazquez N., Walsh T. J., Friedman D., Chanock S. J. and Lyman C. A. (1998): Interleukin-15 augments superoxide production and microbicidal activity of human monocytes against Candida albicans. Infect. Immun., 66, 145–150.PubMedGoogle Scholar
  67. Winger F., Brar S. S., Mayne A., Chikkala N. and Ansari A. A. (1995): Comparative sequence analysis of cytokine genes from human and nonhuman primates. J. Immunol., 155, 3946–3954.Google Scholar
  68. Waldmann T. A. and Tagaya Y. (1999): The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu. Rev. Immunol., 17, 19–49.PubMedCrossRefGoogle Scholar
  69. Warren H. S. (1996): NK cell proliferation and inflammation. Immunol. Cell. Biol., 74, 473–480.PubMedCrossRefGoogle Scholar
  70. Washizu J., Nishimura H., Nakamura N., Nimura Y. and Yoshikai Y. (1998): The NF-kappa B binding site is essential for transcriptional activation of the IL-15 gene. Immunogenetics, 48, 1–7.PubMedCrossRefGoogle Scholar
  71. Williams N. S., Klem J., Puzanov I. J., Sivakumar P. V., Schatzle J. D., Bennett M. and Kumar V. (1998): Natural killer cell differentiation: insights from knockout and transgenic mouse models and in vitro systems. Immunol. Rev., 165, 47–61.PubMedCrossRefGoogle Scholar
  72. Yamada Y. and Kamihira S. (1999): Pathological roles of interleukin-15 in adult T-cell leukemia. Leuk. Lymphoma, 35, 37–45.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Liyanage P. Perera
    • 1
  1. 1.Metabolism Branch, Division of Clinical SciencesNational Cancer InstituteBethesdaUSA

Personalised recommendations