Skip to main content

Consideration of Stress State Influences in the Material Modelling of Creep and Damage

  • Conference paper

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 86))

Abstract

Creep tests performed for many engineering materials show an independent behaviour on the kind of loading during the primary and secondary creep. In this case the creep curves obtained for tensile or compressive loads are approximately the same (only the sign is different), the equivalent strain vs. time curves for tension, compression and torsion are identical, the influence of the mean stress can be ignored, etc. From this follows that the classical von Mises concept can be used in the constitutive modelling. On the other hand, the tertiary creep is strongly influenced by the kind of stress state because, for instance, of the voids opening and closing.

Considering constant temperature, small strains and isotropic behaviour a set of constitutive and evolution equations describing the creep-damage including non-classical effects is introduced. The creep equations are based on a potential depending on three linear-independent stress tensor invariants. The damage is taken into account using the equivalent stress concept. The unknown coefficients in the equations must be identified by tests. The identification procedure is discussed, and as the result the coefficients as dependencies of the material properties are defined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altenbach, H. and Skrzypek, J.J. (Eds.) (1999) Creep and Damage in Materials and Structures. Springer, Wien, New York (CISM Courses and Lectures No. 399)

    Google Scholar 

  2. Altenbach, H., Altenbach, J., and Zolochevsky, A. (1995) Erweiterte Deformationsmodelle und Versagenskriterien in der Werkstojfmechanik. Dt. Verlag für Grundstoffindustrie, Stuttgart

    Google Scholar 

  3. Jin, J. and Cristescu, N.D. (1998) An elastic/viscoplastic model for transient creep of rock salt, Int. J. Plasticity, 14 no. 1–3, pp. 85–107

    Article  MATH  Google Scholar 

  4. Rabotnov, Yu.N. (1969) Creep Problems in Structural Members. North Holland, Amsterdam

    MATH  Google Scholar 

  5. Zyczkowski, M. (1981) Combined Loadings in the Theory of Plasticity. PWN, Warszawa

    MATH  Google Scholar 

  6. Boehler, J.P. (1987) Representations for isotropic and anisotropic non-polynomial tensor functions, in: Applications of Tensor Functions in Solid Mechanics (ed. by J.R Boehler), Springer, Wien, New York, pp. 13–53 (CISM Courses and Lectures No. 292)

    Google Scholar 

  7. Altenbach, H., Schieße, P., and Zolochevsky, A. (1991) Zum Kriechen isotroper Werkstoffe mit komplizierten Eigenschaften, Rheologica Acta, 30, pp. 388–399

    Article  Google Scholar 

  8. Voyiadjis, G.Z. and Zolochevsky, A. (1998) Modeling of secondary creep behaviour for anisotropic materials with different properties in tension and compression, Int. J. Plasticity, 14 no. 10–11, pp. 388–399

    Google Scholar 

  9. Altenbach, H. (1999) Creep-damage behaviour of plates and shells, Mechanics of Time-Dependent Materials, 3, pp. 103–123

    Article  ADS  Google Scholar 

  10. Odqvist, F.K.G. and Hult, J. (1962) Kriechfestigkeit metallischer Werkstoffe, Springer, Berlin u.a.

    Book  Google Scholar 

  11. Gummert, P. (1998a) Contributions and discussions during the CISM Course No. 399

    Google Scholar 

  12. Gummert, P. (1998b) General Constitutive Equations for Simple and Non-simple Materials, in: Creep and Damage in Materials and Structures (ed. by H. Altenbach and J.J. Skrzypek), Springer, Wien, New York

    Google Scholar 

  13. Malinin, N.N. (1981) Raschet na polzuchest’ konstruk cionnykh elementov (Creep Calculations in Structural Elements), Mashinostroenie, Moskva

    Google Scholar 

  14. Billington, E.W (1985) The Poynting-Swift effect in relation to initial and post-yield deformation, Int. J. Solids & Structures, 21, pp. 355–372

    Article  MATH  Google Scholar 

  15. Backhaus, G. (1983) Deformationsgesetze, Akademie-Verlag, Berlin

    Google Scholar 

  16. Reiner, M. (1969) Deformation and Flow. An Elementary Introduction to Rheology, H.K. Lewis & Co., London

    Google Scholar 

  17. Kachanov, L.M. (1986) Introduction to Continuum Damage Mechanics, Martinus Nijhoff, Dordrecht et al.

    Book  MATH  Google Scholar 

  18. Lemaitre, J. (1996) A Course on Continuum Damage Mechanics, Springer, Berlin et al.

    Book  Google Scholar 

  19. Altenbach, H. and Zolochevsky, A. (1996) A generalized failure criterion for three-dimensional behaviour of isotropic materials, Engng Fract. Mech. 54, pp. 75–90

    Article  Google Scholar 

  20. Hayhurst, D.R. (1972) Creep rupture under multiaxial states of stress, J. Mech. Phys. Solids, 20, pp. 381–390

    Article  ADS  Google Scholar 

  21. Novozhilov, V.V. (1951) On the stress-strain relations in non-linear elastic continua, Prikl. Mat. i Mekh., XV no. 2, pp. 183–194

    Google Scholar 

  22. Konkin, V.N. and Morachkovskij, O.K. (1987) Long-term strength of light alloys with anisotropic properties (in Russian), Probl. Prochn., no. 6, pp. 38–42

    Google Scholar 

  23. Altenbach, H. and Zolochevsky, A.A. (1994) Eine energetische Variante der Theorie des Kriechens und der Langzeitfestigkeit für isotrope Werkstoffe mit komplizierten Eigenschaften, ZAMM, 74 no. 3, pp. 189–199

    Article  ADS  MATH  Google Scholar 

  24. Altenbach, H., Morachkovsky, O., Naumenko, K., and Sychov, A. (1997) Geometrically nonlinear bending of thin-walled shells and plates under creep-damage conditions, Arch. Appl. Meek, 67, pp. 339–352

    Article  ADS  MATH  Google Scholar 

  25. Altenbach, H., Kolarov, G., Morachkovsky, O.K., and Naumenko, K. (2000) On the accuracy of creep-damage predictions in thin-walled structures using the finite element method, Comp. Meek, 25, pp. 87–98

    Article  ADS  MATH  Google Scholar 

  26. Altenbach, H., Kushnevsky, V., and Naumenko, K. (2000) On the use of solid and shell type finite elements in creep-damage predictions of thinwalled structures, Arch. Appl. Mech., (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Altenbach, H. (2001). Consideration of Stress State Influences in the Material Modelling of Creep and Damage. In: Murakami, S., Ohno, N. (eds) IUTAM Symposium on Creep in Structures. Solid Mechanics and its Applications, vol 86. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9628-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9628-2_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5623-8

  • Online ISBN: 978-94-015-9628-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics