Skip to main content

Fractional Flow Reserve to Distinguish Significant Stenosis: Use at Diagnostic Catherization

Cut-off values to detect reversible ischemia

  • Chapter
  • 84 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 195))

Abstract

The ultimate goal of every diagnostic method should be to facilitate clinical decision-making and to enable evaluation of the results of therapeutic interventions. This is especially true with respect to physiologic investigations in the catheterization laboratory. A number of studies establishing the value of coronary pressure measurement and FFR to distinguish between functionally significant and non-significant stenoses, is presented in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guyton AC. The coronary circulation and ischemic heart disease, in: Textbook of medical Physiology. Saunders Company, Philadelphia 1986, pp 295–304.

    Google Scholar 

  2. Wilson RF, Marcus ML, Christensen BV. Accuracy of exercise electrocardiography in detecting physiologically significant coronary arterial lesions. Circulation 1991; 83: 41 2421.

    Google Scholar 

  3. ECS working group on exercise physiology, physiopathology, and electrocardiography. Guidelined for cardiac exercise testing. Eur Heart J 1993; 14: 969–988.

    Article  Google Scholar 

  4. Becker RC, Alpert JS. Electrocardiographic ST segment depression in coronary heart disease. Am Heart J 1988; 115: 862–868.

    Article  PubMed  CAS  Google Scholar 

  5. Mirvis DM, Gordey RL. Electrocardiographic effects of myocardial ischemia induced by atrial pacing in dogs with coronary stenosis, I: repolarization changes with progressive left circumflex arterial narrowing. JAm Coll Cardiol 1983; 1: 1090–1098.

    Article  CAS  Google Scholar 

  6. Smith HJ, Singh BN, Norris RM. John MB, Hurley PJ. Changes in myocardial blood flow and ST-segment elevation following coronary artery occlusion in dogs. Circ Res 1975; 36: 697–705.

    Article  PubMed  CAS  Google Scholar 

  7. Khuri SF, Flaherty JT, O’Riordan JB, Pitt B, Brawley RK, Donahoo JS, Gott VL. Changes in intramyocardial ST segment voltage and gas tensions with regional myocardial ischemia in the dog. Cire Res 1975; 37: 455–463.

    Article  CAS  Google Scholar 

  8. Angell CS, Lakatta EG, Weisfeldt ML, Shock NW. Relationship of intramyocardial oxygen tension and epicardial ST segment changes following acute coronary artery ligation: effects of coronary perfusion pressure. Cardiovasc Res 1975; 9: 12–18.

    Article  PubMed  CAS  Google Scholar 

  9. Heng MK, Singh BN, Norris RM, John MB, Elliott R. Relationship between epicardial ST segment elevation and myocardial ischemic damage after experimental coronary artery occlusion in dogs. JClin Invest 1976; 58: 1317–1326.

    Article  CAS  Google Scholar 

  10. Ruffi R, Lovelace DE, Mueller TM, Knoebel SB, Zipes DP. Relationship between changes in bipolar electrograms and regional myocardial blood flow during acute coronary artery occlusion in the dog. Circ Res 1979; 45: 764–770.

    Article  Google Scholar 

  11. Mirvis DM, Ramanathan KB, Wilson JL. Regional blood flow correlates of ST segment depression in tachycardia-induced myocardial ischemia. Circulation 1986; 73: 365–373.

    Article  PubMed  CAS  Google Scholar 

  12. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 1974; 33: 87–94.

    Article  PubMed  CAS  Google Scholar 

  13. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG: Relation between myocardial blood flow and the severity of coronary artery stenosis. N Engl J Med 1994; 330: 1782–1788.

    Article  PubMed  CAS  Google Scholar 

  14. Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD: Effects of adenosine on human coronary arterial circulation. Circulation 1990; 82: 1595–1606.

    Article  PubMed  CAS  Google Scholar 

  15. Pijls NHJ, Van Son JAM, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing function stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 1993; 87: 1354–67.

    Article  PubMed  CAS  Google Scholar 

  16. De Bruyne B, Baudhuin T, Melin JA, Pijls NHJ, SYS SU, Bol A, Paulus WJ, Heyndrickx GR, Wijns W. Coronary flow reserve calculated from pressure measurements in man. Validation with positron emission tomography. Circulation 1994; 89: 1013–1022.

    Article  PubMed  Google Scholar 

  17. De Bruyne B, Bartunek J, Sys SU, Heyndrickx GR. Relation between myocardial fractional flow reserve calculated from coronary pressure measurements and exercise-induced myocardial ischemia. Circulation 1995; 92: 39–46.

    Article  PubMed  Google Scholar 

  18. Pijls NHJ, Van Gelder B, Van der Voort P, Peels K, Bracke FALE, Bonnier JJRM, El Gamal MIH. Fractional Flow Reserve; a useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 1995; 92: 3183–3193.

    Article  PubMed  CAS  Google Scholar 

  19. Hamilton GW, Trobaugh GB, Ritchie JL, Gould KL, DeRouen A, Williams DL: Myocardial imaging with 201thallium: An analysis of clinical usefulness base on Bayes’ theorem. Semin Nucl Med 1978; 8: 358–364.

    Article  PubMed  CAS  Google Scholar 

  20. Melin JA, Piret LJ, Vanbutsele RJM, Rousseau MF, Cosyns J, Brasseur LA, Beckers C, and Detry JMR. Diagnostic value of exercise electrocardiography and thallium myocardial scintigraphy in patients without previous myocardial infarction: a Bayesian approach. Circulation 1981; 63: 1019–1024.

    Article  PubMed  CAS  Google Scholar 

  21. Nabel EG, Ganz JB, Alexander RW, Selwyn AP: Dilation of normal and constriction of atherosclerotic coronary arteries caused by the cold pressor test. Circulation 1988; 77: 43–52.

    Article  PubMed  CAS  Google Scholar 

  22. Topol EJ, Ellis SG, Cosgrove DM, Bates ER, Muller DWM, Schork NJ, Schork MA, Loop FD: Analysis of coronary angioplasty practice in the United States with an insurance-claims data base. Circulation 1993; 87: 1489–1497.

    Article  PubMed  CAS  Google Scholar 

  23. Chaitman BR, Bourassa MG, Davis K, Rogers WJ. Tyras DH, Berger R, Kenedy JW, Fisher L, Judkins MP, Mock MB, Killip T: Angiographie prevalence of high-risk coronary artery disease in patient subsets. Circulation 1981; 64: 360–367.

    Article  PubMed  CAS  Google Scholar 

  24. Berthe C, Pierard LA, HIERnaux M, Trotteur G, Lempereur P, Carlier J, Kulbertus HE, Predicting the extent and location of coronary artery disease in acute myocardial infarction by echocardiography during dobutamine infusion. Am J Cardiol 1986; 58: 1167–1172.

    Article  PubMed  CAS  Google Scholar 

  25. Sawada SG, Segar DS, Ryan T, Brown SE, Dohan AM, Williams R, Fineberg NS, Armstrong WF, Feigenbaum H. Echocardiographic detection of coronary artery disease during dobutamine infusion. Circulation 1991; 83: 1605–1614.

    Article  PubMed  CAS  Google Scholar 

  26. Cohen JL, Greene TO, Ottenweller J, Binenbaum SZ, Wilchfort SD, Kim CS. Dobutamine digital echocardiography for detecting coronary artery disease. Am JCardiol 1991; 67: 1311–1318.

    Article  CAS  Google Scholar 

  27. Mazeika PK, Nadazdin A, Oakley CM. Dobutamine stress echocardiography for detection and assessment of coronary artery disease. JAm Coll Cardiol 1992; 19: 1203–1211.

    Article  CAS  Google Scholar 

  28. Marwick T, D’Hondt AM, Baudhuin T, Willemart B, Wijns W, Detry JM, Melin J. Optimal use of dobutamine stress for the detection and evaluation of coronary artery disease: combination with echocardiography or scintigraphy, or both? J Am Coll Cardiol 1993; 22: 159–167.

    Article  PubMed  CAS  Google Scholar 

  29. Marwick T, Willemart B, D’Hondt AM, Baudhuin T, Wijns W, Detry JM, Melin J. Selection of the optimal nonexercise stress for the evaluation of ischemic regional myocardial dysfunction and malperfusion. Circulation 1993; 87: 345–354.

    Article  PubMed  CAS  Google Scholar 

  30. Bartunek J, Marwick TH, Rodrigues ACT, Vincent M, Van Schuerbeeck E, Sys SU, De Bruyne B. Dobutamine-induced wall motion abnormalities: correlations with myocardial fractional flow reserve and quantitative coronary angiography. JACC 1996; 27: 1429–1436.

    Article  PubMed  CAS  Google Scholar 

  31. McNeill AJ, Fioretti PM, El-Said EM, Salustri A, Forster T, Roelandt JRTC. Enhanced sensitivity for detection of coronary artery disease by addition of atropine to dobutamine stress echocardiography. Am JCardiol 1992; 70: 41–46.

    Article  CAS  Google Scholar 

  32. Bourdillon PD, Broderick TM, Sawada SG, Armstrong WF, Ryan T, Dillin JC, Fineberg NS, Feigenbaum H. Regional wall motion index for infarct and noninfarct regions after reperfusion in acute myocardial infarction: comparison with global wall motion index. J Am Soc Echo 1989; 2: 298–407.

    Google Scholar 

  33. Bartunek J, Van Schuerbeeck E, De Bruyne B. Comparison of exercise electrocardiography and dobutamine echocardiography with invasively assessed myocardial fractional flow reserve in evaluation of severity of coronary arterial narrowing. Am J Cardiol 1997: 79: 478–481.

    Article  PubMed  CAS  Google Scholar 

  34. Wilson RF, White CW: Intracoronary papaverine: An ideal coronary vasodilator for studies of the coronary circulation in conscious humans. Circulation 1986; 73: 444–451.

    Article  PubMed  CAS  Google Scholar 

  35. Wilson RF: Assessment of the human coronary circulation using a Doppler catheter. Am J Cardiol 1991; 67: 44D - 56D.

    Article  PubMed  CAS  Google Scholar 

  36. White CW, Wright CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, Marcus ML: Does visual interpretation of the coronary arteriogram predict the physiological importance of a coronary stenosis ? N Engl J Med 1984; 310: 819–824.

    Article  PubMed  CAS  Google Scholar 

  37. Gould KL: Functional measures of coronary stenosis severity at cardiac catheterization. J Am Coll Cardiol 1990; 16: 198–9.

    Article  PubMed  CAS  Google Scholar 

  38. Zijlstra F. Reiber JHC, Juillière Y, Serruys PW: Normalization of coronary flow reserve by percutaneous trasnluminal coronary angioplasty. Am J Cardiol 1988; 61: 55–63

    Article  PubMed  CAS  Google Scholar 

  39. Kern MJ, Deligonul U, Tatineni S, Serota H, Aguirre FV, Hilton TC: Intravenous adenosine continuous infusion and low dose bolus administration for determination of coronary vasodilatory reserve in patients with and without coronary artery disease. J Am Coll Cardiol 1991; 18: 718–729.

    Article  PubMed  CAS  Google Scholar 

  40. McGinn AL, White CW, Wilson RF: Interstudy variability of coronary flow reserve. Influence of heart rate, arterial pressure, and ventricular preload. Circulation 1990; 81: 1319–1330.

    Article  PubMed  CAS  Google Scholar 

  41. Pijls NHJ, Aengevaeren WRM, Uyen GJH, Hoevelaken A, Pijnenburg T, Van Leeuwen K, Van der Werf T. The concept of maximal flow ratio for immediate evaluation of PTCA-results by videodensitometry. Circulation 1991; 83: 854–865.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pijls, N.H.J., De Bruyne, B. (2000). Fractional Flow Reserve to Distinguish Significant Stenosis: Use at Diagnostic Catherization. In: Coronary Pressure. Developments in Cardiovascular Medicine, vol 195. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9564-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9564-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5398-5

  • Online ISBN: 978-94-015-9564-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics