Skip to main content

Scientific Progress and Changes in Hierarchies of Scientific Disciplines

  • Chapter
The Growth of Mathematical Knowledge

Part of the book series: Synthese Library ((SYLI,volume 289))

Abstract

My considerations on the progress of mathematical knowledge arose from historical investigations of the emergence of modern systems of formal logic in the 19th century. Because of the radical changes these processes of development effected, they have been called revolutionary (Gillies 1992). Those portions of formal logic that operated symbolically were removed from the domain of philosophy and inserted into mathematics, where they were utilized in foundations. The fact that today the term “logic” is often identified with “mathematical logic” shows how radical this change has been, as mathematical logic was at first only a further development of a part of traditional logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Atiyah, Michael F. (1974). “Wandel und Fortschritt in der Mathematik.” in (Otte 1974, 203–18).

    Google Scholar 

  • Boole, George. (1847/1951). The Mathematical Analysis of Logic. Being an Essay Towards a Calculus of Deductive Reasoning. Oxford: Basil Blackwell.

    Google Scholar 

  • Bourbaki, Nicolas. (1974). “Die Architektur der Mathematik.” in (Otte 1974, 140–59).

    Google Scholar 

  • Brieskorn, Egbert. (1974). “Über die Dialektik in der Mathematik.” in (Otte 1974, 221–86).

    Google Scholar 

  • Crowe, Michael. (1992). “Ten ‘Laws’ Concerning Patterns of Change in the History of Mathematics” in (Gillies 1992, 15–20). First published in (1975). Historia Mathematica. Volume 2: 161–6.

    Google Scholar 

  • Dauben, Joseph W. (1992). “Conceptual Revolutions and the History of Mathematics: Two Studies in the Growth of Knowledge” in (Gillies 1992, 49–82). First published in Mendelsohn, E. (Ed.). (1984). Transformation and Tradition in the Sciences. Essays in Honor of I. Bernard Cohen. 81–103.

    Google Scholar 

  • Diemer, Alwin and Helmut Seiffert. (1989). “Systematik der Wissenschaften.” in Handlexikon zur Wissenschaftstheorie. Helmut, Seiffert and G. Radnitzky. (Eds.). Munich: Ehrenwirth. 344–52.

    Google Scholar 

  • Frege, Gottlieb. (1893/1903/1962). Grundgesetze der Arithmetik. Begriffsschriftlich abgeleitet. Hildesheim: Olms.

    Google Scholar 

  • Frege, Gottlieb. (1983). Nachgelassene Schriften. H. Hermes, F. Kambartel, and F. Kaulbach. (Eds.). Hamburg: Felix Meiner.

    Google Scholar 

  • Gillies, Donald. (1992). “The Fregean Revolution in Logic.” in (Gillies 1982, 265–305).

    Google Scholar 

  • Gillies, Donald. (Ed.). (1992). Revolutions in Mathematics. Oxford: Clarendon Press.

    Google Scholar 

  • Guntau, Martin, and Laitko, Hilbert. (1987). “Entstehung und Wesen wissenschaftlicher Disziplinen.” in Der Ursprung der modernen Wissenschaften. Studien zur Entstehung wissenschaftlicher Disziplinen. Guntau and Laitko. (Eds.). Berlin: Akademie-Verlag. 17–89. English translation 1991.

    Google Scholar 

  • Guntau, Martin, and Laitko, Hilbert. (1991). “On the Origin and Nature of Scientific Disciplines,” in World Views and Scientific Discipline Formation. Science Studies in the German Democratic Republic. Papers from a German-American Summer Institute 1988. W. R. Woodward and R. S. Cohen. (Eds.). Boston Studies in the Philosophy of Science, Vol. 134: 17–28. Dordrecht: Kluwer.

    Google Scholar 

  • Hilbert, David. (1899). “Grundlagen der Geometric” in Festschrift zur Feier der Enthüllung des Gauss- Weber-Denkmals in Göttingen, ed. Fest-Comitee, Leipzig, 1–92. English translation The Foundations of Geometry, Chicago, 111. 1902, La Salle, 111., 1971.

    Google Scholar 

  • Hilbert, David. (1918). “Axiomatisches Denken.” Mathematische Annalen. Vol. 78: 405–15.

    Article  Google Scholar 

  • Kuhn, Thomas S. (1962/1970). The Structure of Scientific Revolutions. Chicago: University of Chicago Press.

    Google Scholar 

  • Kuhn, Thomas S. (1970). “Reflections on my Critics.” in (Lakatos and Musgrave 1970, 231–78).

    Google Scholar 

  • Lakatos, Imre. (1968). “Criticism and the Methodology of Scientific Research Programs.” Proceedings of the Aristotelian Society. Vol. 69: 149–86.

    Google Scholar 

  • Lakatos, Imre. (1970). “Falsificationism and the Methodology of Scientific Research Programs.” in (Lakatos and Musgrave 1970, 89–189).

    Google Scholar 

  • Lakatos, Imre and Musgrave, Alan. (Eds.). (1970). Criticism and the Growth of Knowledge. Proceedings of the International Colloquium in the Philosophy of Science. Vol. 4, 1965. London: London niversity Press.

    Google Scholar 

  • Mehrtens, Herbert. (1976/1992). “T.S. Kuhn’s Theories and Mathematics: a Discussion Paper on the ‘New Historiography’ of Mathematics” in (Gillies 1992, 21–41). First published in (1976). Historia athematica. Vol. 3: 297–320.

    Article  Google Scholar 

  • Mehrtens, Herbert. (1990). Moderne — Sprache — Mathematik. Eine Geschichte des Streits um die rundlagen der Disziplin und des Subjekts formaler Systeme. Frankfurt: Suhrkamp.

    Google Scholar 

  • Otte, Michael. (Ed.). (1974). Mathematiker über Mathematik. Berlin: Springer. (=ssenschaft und ffentlichkeit).

    Google Scholar 

  • Peckhaus, Volker. (1990a). Hilbertprogramm und Kritische Philosophie. Das Göttinger Modell nterdisziplinärer Zusammenarbeit zwischen Mathematik und Philosophie. Göttingen: Vandenhoeck & Ruprecht. (=Studien zur Wissenschafts-, Sozial- und Bildungsgeschichte der Mathematik; 7).

    Google Scholar 

  • Peckhaus, Volker. (1990b). “‘Ich habe mich wohl gehütet, alle Patronen auf einmal zu verschiessen.’ Ernst Zermelo in Göttingen.” History and Philosophy of Logic. Vol. 11: 19–58.

    Article  Google Scholar 

  • Peckhaus, Volker. (1994a). “Leibniz als Identifikationsfigur der britischen Logiker des 19. Jahrhunderts.” in VI. Internationaler Leibniz-Kongress. Vorträge I. Teil, Hannover, 18.–22.7.1994. Hannover: Gottfried-Wilhelm-Leibniz-Gesellschaft. 589–96.

    Google Scholar 

  • Peckhaus, Volker. (1994b). “Wozu Algebra der Logik? Ernst Schröders Suche nach einer universalen Theorie der Verknüpfungen.” Modern Logic. Vol. 4: 357–81.

    Google Scholar 

  • Peckhaus, Volker. (1995). “Hilberts Logik. Von der Axiomatik zur Beweistheorie.” NTM. Internationale Zeitschrift für Geschichte und Ethik der Naturwissenschaften, Technik und Medizin N.F. Vol. 3: 65–80.

    Article  Google Scholar 

  • Schröder, Ernst. (1873). Lehrbuch der Arithmetik und Algebra für Lehrer und Studirende. Vol. 1. [no further volumes published: Die sieben algebraischen Operationen, B. G. Teubner: Leipzig.

    Google Scholar 

  • Schröder, Ernst. (1877). Der Operationskreis des Logikkalkuls. Leipzig: Teubner. Reprinted Darmstadt: Wissenschaftliche Buchgesellschaft. 1966.

    Google Scholar 

  • Schröder, Ernst. (1890/1905). Vorlesungenüber die Algebra der Logik (exakte Logik). Leipzig: B. G. Teubner. Repr. as Second edition, Bronx: Chelsea. 1966.

    Google Scholar 

  • Segre, Michael. (1994). “Peano’s Axioms in their Historical Context.” Archive for History of Exact Sciences. Vol. 48: 201–342.

    Article  Google Scholar 

  • Thiel, Christian. (1984). “Leibnizprogramm.” in Enzyklopädie, Philosophie und Wissenschaftstheorie. Jürgen Mittelstrass. (Ed.). B.I.: Mannheim-Wien-Zürich, 580.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Peckhaus, V. (2000). Scientific Progress and Changes in Hierarchies of Scientific Disciplines. In: Grosholz, E., Breger, H. (eds) The Growth of Mathematical Knowledge. Synthese Library, vol 289. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9558-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9558-2_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5391-6

  • Online ISBN: 978-94-015-9558-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics