Abstract
My considerations on the progress of mathematical knowledge arose from historical investigations of the emergence of modern systems of formal logic in the 19th century. Because of the radical changes these processes of development effected, they have been called revolutionary (Gillies 1992). Those portions of formal logic that operated symbolically were removed from the domain of philosophy and inserted into mathematics, where they were utilized in foundations. The fact that today the term “logic” is often identified with “mathematical logic” shows how radical this change has been, as mathematical logic was at first only a further development of a part of traditional logic.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Atiyah, Michael F. (1974). “Wandel und Fortschritt in der Mathematik.” in (Otte 1974, 203–18).
Boole, George. (1847/1951). The Mathematical Analysis of Logic. Being an Essay Towards a Calculus of Deductive Reasoning. Oxford: Basil Blackwell.
Bourbaki, Nicolas. (1974). “Die Architektur der Mathematik.” in (Otte 1974, 140–59).
Brieskorn, Egbert. (1974). “Über die Dialektik in der Mathematik.” in (Otte 1974, 221–86).
Crowe, Michael. (1992). “Ten ‘Laws’ Concerning Patterns of Change in the History of Mathematics” in (Gillies 1992, 15–20). First published in (1975). Historia Mathematica. Volume 2: 161–6.
Dauben, Joseph W. (1992). “Conceptual Revolutions and the History of Mathematics: Two Studies in the Growth of Knowledge” in (Gillies 1992, 49–82). First published in Mendelsohn, E. (Ed.). (1984). Transformation and Tradition in the Sciences. Essays in Honor of I. Bernard Cohen. 81–103.
Diemer, Alwin and Helmut Seiffert. (1989). “Systematik der Wissenschaften.” in Handlexikon zur Wissenschaftstheorie. Helmut, Seiffert and G. Radnitzky. (Eds.). Munich: Ehrenwirth. 344–52.
Frege, Gottlieb. (1893/1903/1962). Grundgesetze der Arithmetik. Begriffsschriftlich abgeleitet. Hildesheim: Olms.
Frege, Gottlieb. (1983). Nachgelassene Schriften. H. Hermes, F. Kambartel, and F. Kaulbach. (Eds.). Hamburg: Felix Meiner.
Gillies, Donald. (1992). “The Fregean Revolution in Logic.” in (Gillies 1982, 265–305).
Gillies, Donald. (Ed.). (1992). Revolutions in Mathematics. Oxford: Clarendon Press.
Guntau, Martin, and Laitko, Hilbert. (1987). “Entstehung und Wesen wissenschaftlicher Disziplinen.” in Der Ursprung der modernen Wissenschaften. Studien zur Entstehung wissenschaftlicher Disziplinen. Guntau and Laitko. (Eds.). Berlin: Akademie-Verlag. 17–89. English translation 1991.
Guntau, Martin, and Laitko, Hilbert. (1991). “On the Origin and Nature of Scientific Disciplines,” in World Views and Scientific Discipline Formation. Science Studies in the German Democratic Republic. Papers from a German-American Summer Institute 1988. W. R. Woodward and R. S. Cohen. (Eds.). Boston Studies in the Philosophy of Science, Vol. 134: 17–28. Dordrecht: Kluwer.
Hilbert, David. (1899). “Grundlagen der Geometric” in Festschrift zur Feier der Enthüllung des Gauss- Weber-Denkmals in Göttingen, ed. Fest-Comitee, Leipzig, 1–92. English translation The Foundations of Geometry, Chicago, 111. 1902, La Salle, 111., 1971.
Hilbert, David. (1918). “Axiomatisches Denken.” Mathematische Annalen. Vol. 78: 405–15.
Kuhn, Thomas S. (1962/1970). The Structure of Scientific Revolutions. Chicago: University of Chicago Press.
Kuhn, Thomas S. (1970). “Reflections on my Critics.” in (Lakatos and Musgrave 1970, 231–78).
Lakatos, Imre. (1968). “Criticism and the Methodology of Scientific Research Programs.” Proceedings of the Aristotelian Society. Vol. 69: 149–86.
Lakatos, Imre. (1970). “Falsificationism and the Methodology of Scientific Research Programs.” in (Lakatos and Musgrave 1970, 89–189).
Lakatos, Imre and Musgrave, Alan. (Eds.). (1970). Criticism and the Growth of Knowledge. Proceedings of the International Colloquium in the Philosophy of Science. Vol. 4, 1965. London: London niversity Press.
Mehrtens, Herbert. (1976/1992). “T.S. Kuhn’s Theories and Mathematics: a Discussion Paper on the ‘New Historiography’ of Mathematics” in (Gillies 1992, 21–41). First published in (1976). Historia athematica. Vol. 3: 297–320.
Mehrtens, Herbert. (1990). Moderne — Sprache — Mathematik. Eine Geschichte des Streits um die rundlagen der Disziplin und des Subjekts formaler Systeme. Frankfurt: Suhrkamp.
Otte, Michael. (Ed.). (1974). Mathematiker über Mathematik. Berlin: Springer. (=ssenschaft und ffentlichkeit).
Peckhaus, Volker. (1990a). Hilbertprogramm und Kritische Philosophie. Das Göttinger Modell nterdisziplinärer Zusammenarbeit zwischen Mathematik und Philosophie. Göttingen: Vandenhoeck & Ruprecht. (=Studien zur Wissenschafts-, Sozial- und Bildungsgeschichte der Mathematik; 7).
Peckhaus, Volker. (1990b). “‘Ich habe mich wohl gehütet, alle Patronen auf einmal zu verschiessen.’ Ernst Zermelo in Göttingen.” History and Philosophy of Logic. Vol. 11: 19–58.
Peckhaus, Volker. (1994a). “Leibniz als Identifikationsfigur der britischen Logiker des 19. Jahrhunderts.” in VI. Internationaler Leibniz-Kongress. Vorträge I. Teil, Hannover, 18.–22.7.1994. Hannover: Gottfried-Wilhelm-Leibniz-Gesellschaft. 589–96.
Peckhaus, Volker. (1994b). “Wozu Algebra der Logik? Ernst Schröders Suche nach einer universalen Theorie der Verknüpfungen.” Modern Logic. Vol. 4: 357–81.
Peckhaus, Volker. (1995). “Hilberts Logik. Von der Axiomatik zur Beweistheorie.” NTM. Internationale Zeitschrift für Geschichte und Ethik der Naturwissenschaften, Technik und Medizin N.F. Vol. 3: 65–80.
Schröder, Ernst. (1873). Lehrbuch der Arithmetik und Algebra für Lehrer und Studirende. Vol. 1. [no further volumes published: Die sieben algebraischen Operationen, B. G. Teubner: Leipzig.
Schröder, Ernst. (1877). Der Operationskreis des Logikkalkuls. Leipzig: Teubner. Reprinted Darmstadt: Wissenschaftliche Buchgesellschaft. 1966.
Schröder, Ernst. (1890/1905). Vorlesungenüber die Algebra der Logik (exakte Logik). Leipzig: B. G. Teubner. Repr. as Second edition, Bronx: Chelsea. 1966.
Segre, Michael. (1994). “Peano’s Axioms in their Historical Context.” Archive for History of Exact Sciences. Vol. 48: 201–342.
Thiel, Christian. (1984). “Leibnizprogramm.” in Enzyklopädie, Philosophie und Wissenschaftstheorie. Jürgen Mittelstrass. (Ed.). B.I.: Mannheim-Wien-Zürich, 580.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Peckhaus, V. (2000). Scientific Progress and Changes in Hierarchies of Scientific Disciplines. In: Grosholz, E., Breger, H. (eds) The Growth of Mathematical Knowledge. Synthese Library, vol 289. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9558-2_25
Download citation
DOI: https://doi.org/10.1007/978-94-015-9558-2_25
Publisher Name: Springer, Dordrecht
Print ISBN: 978-90-481-5391-6
Online ISBN: 978-94-015-9558-2
eBook Packages: Springer Book Archive