Skip to main content

The Biochemistry of Redox Reactions

  • Chapter
The Redox State and Circadian Rhythms

Abstract

Redox reactions are present in many physiological processes. Chemical and heat energy are provided by the oxidation of molecules by oxygen in many species. Although necessary to life, oxygen molecules can produce reactive molecules leading to diseases. Other reactive species including free radicals are also responsible for pathological states. The present chapter will only describe the basic redox reactions explaining the formation of reactive oxygen species (singlet oxygen, superoxide anion, hydrogen peroxide, alkoxyl radical, hydroperoxyl radical), of reactive nitrogen species (nitric oxide radical, nitrogen dioxide, peroxinitrite ion, nitrous acid) and of the very important lipid peroxides. The Fenton reaction plays an important role in the formation of reactive species and the mechanisms will be discussed. The organisms are equipped with defence mechanisms; both enzymatic (superoxide dismutase, catalase, peroxidase) and non-enzymatic reactions, some of them including the scavengers are summarized here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ATP:

adenosine-5’-triphosphate

DNA:

deoxyribonucleic acid

FMN:

flavin mononucleotide

GSH:

glutathione reduced form

GSSG:

glutathione disulfide

NADH:

β-nicotinamide adenine dinucleotide reduced form

NADPH:

β-nicotinamide adenine dinucleotide phosphate reduced form

NAD(P)H:

NADH or NADPH

NAD+ :

β-nicotinamide adenine dinucleotide oxidized

NADP+ :

β-nicotinamide adenine dinucleotide phosphate oxidized

NO:

nitric oxide

NOS:

nitric oxide synthase

RNS:

reactive nitrogen species

ROS:

reactive oxygen species

Se-GPx:

selenium-glutathione peroxidase

SOD:

superoxide dismutase

References

  • Armstrong D., ed. (1994) Free radicals in diagnostic and medicine. Plenum Press, New York

    Book  Google Scholar 

  • Asmus K.D., Gobl M., Hiller K. O., Mahling S. and Monig J. (1985) Three-electron-bonded radicals and radicalcations in aqueous solutions. J. Chem. Soc., Perkin Trans. II, 641–6

    Google Scholar 

  • Balasubramanian B., Pogozelski W.K. and Tullius T.D. (1998) DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA bakbone. Proc. Natl. Acad. Sci. USA 95, 9738–43

    Google Scholar 

  • Blackledge M., Guerlesquin F. and Marion D., (1995) Variations of methionine ligand position in class I cytochrome c: its implications for sequence homology. Nature Struct. Biol. 2, 532–535

    Article  PubMed  CAS  Google Scholar 

  • Blanchard L. and Guerlesquin F., (1995) Propriétés d’oxydo-réduction dans les chaînes de transfert d’électrons. Regards sur la Biochimie, 4, 41–48

    Google Scholar 

  • Bobrowski K. and Holcman J. (1987) Formation of three-electron-bonds in one-electron oxidized methionine dipeptides: a pulse radiolysis study. Int. J. Radiat. Biol., 52, 139–44.

    Article  CAS  Google Scholar 

  • Cadenas E. (1989) Biochemistry of oxygen toxicity. Ann. Rev. Biochem. 58, 79–110

    Article  PubMed  CAS  Google Scholar 

  • Chaudière J. (1994) Some chemical and biochemical constraints of oxidative stress in living cells. In Free radical damage and its control. Rice-Evans C.A. and Burdon R.H. (Eds), Elsevier Science B.V.Ch 2.

    Google Scholar 

  • Chow C.K. (1988) Vitamins and related dietary antioxidants. In Trace elements, micronutrients, and free radicals. I.E.Dreosti ed., humana press, Totowa, New jersey, 129147

    Google Scholar 

  • Cino M. and Del Maestro R.F. (1989) Generation of hydrogen peroxide by brain mitochondria: the effects of reoxygenation following postdecapitative ischemia. Arch. Biochem. Biophys. 269, 623–638

    Article  PubMed  CAS  Google Scholar 

  • Del Maestro R. (1991) Free radicals as mediators of tissue injury. In Trace elements, micronutrients and free radicals.

    Google Scholar 

  • Dreosti I.E. (Ed). Humana Press, Totowa, New Jersey. Demple B. (1998) A bridge to control. Science 279, 1655–1657

    Article  Google Scholar 

  • Diplock A.T. (1994) Antioxidants and free radical scavengers. In Free radical damage and its control. Rice-Evans C.A. and Burdon R.H. (Eds), Elsevier Science B.V.Ch 4

    Google Scholar 

  • Dreosti I.E. (Ed) (1991) Trace elements, micronutrients and free radicals. Humana Press, Totowa, New Jersey.

    Book  Google Scholar 

  • Gilad E., Cuzzocrea S., Zingarelli B., Salzman A. and Szabo C. (1997) Melatonin is a scavenger of peroxinitrite. Life Sciences 60, 169–174

    Article  Google Scholar 

  • Gilbert H.F. (1990) Molecular and cellular aspects of thiol-disulfide exchange. Adv. In Enzymol. 63, 69–172

    Google Scholar 

  • Gutteridge J.M.C. (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem. 41, 1819–1828

    PubMed  CAS  Google Scholar 

  • Halliwell B. and Gutteridge J.M.C. (1989) Free radicals in Biology and Medicine, Oxford University Press, 543 pp.

    Google Scholar 

  • Halliwell B. and Gutteridge J.M.C. (1990) Role of free radicals and catalytic metal ions in human disease: an overview. In Oxygen radicals in biological systems part B in Methods in Enzymol. Packer L. and Glazer A.N. (eds) 186, Ch. 1

    Google Scholar 

  • Hardeland R., Reiter R.J., Poeggeler B. and Tan D.X. (1993) The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neuroscience and behavioral reviews, 17, 347–353

    Article  CAS  Google Scholar 

  • Henle E.S., Han Z., Tang N., Rai P., Luo Y. and Linn S. (1999) Sequence-specific DNA cleavage by Fez+ -mediated Fenton reactions has possible biological implications. J.Biol.Chem. 274, 962–71

    Google Scholar 

  • Higuchi H., Granger D.N., Saito H. and Kurose I. (1999) Assay of antioxidant and antiinflammatory activity of nitric oxide. In Methods in Enzymol., Packer L. (Ed.) Academic Press, London, New York, 301, 424–436.

    Google Scholar 

  • Hildebrand K and Schulte-Frohlinde D (1989) E.S.R. studies on the mechanism of hydroxyl radical-induced strand breakage of polyuridylic acid. Int. J. Radiat. Biol., 55, 725–738.

    Article  Google Scholar 

  • Kawanishi S, Inoue S, Sano S and Aiba H (1986) Photodynamic guanine modification by haematoporphyrin is specific for single-stranded DNA with singlet oxygen as mediator. J. Biol. Chem., 261, 6090–5.

    Google Scholar 

  • Kobuchi H., Virgili F. and Packer L. (1999) Assay of inducible form of nitric oxide synthase activity: effect of flavonoids and plant extracts. In Methods in Enzymol., Packer L. (Ed.) Academic Press, London, New York, 301, 504–513

    Google Scholar 

  • Koppenol W.H. and Traynham J.G. (1996) Say NO to nitric oxide: nomenclature for Nitrogen and Oxygen-containing compounds. In Meth. In Enzymol., 268, 3–31, Academic Press

    Google Scholar 

  • Koppenol W.H. (1994) Chemistry of iron and copper in radical reactions. In Free radical damage and its control.

    Google Scholar 

  • Rice-Evans C.A. (1994) and Burdon R.H. (Eds), Elsevier Science B.V. Amsterdam, Ch 1.

    Google Scholar 

  • Krinsky N.I. (1992) Mechanism of action of biological antioxidants, P.E.S.B.M., 200, 24825 )

    Google Scholar 

  • Lass A. and Sohal R.S. (1998) Electron transport-linked ubiquinone-dependent recycling of a-tocopherol inhibits autooxidation of mitochondrial membranes. Arch. Biochem. Biophys. 352, 229–36

    Article  PubMed  CAS  Google Scholar 

  • Lloyd R.V. and Mason R.P. (1990) Evidence against transition metal-independent hydroxyl radical generation by xanthine oxidase J. Biol. Chem. 265, 16733–6

    PubMed  CAS  Google Scholar 

  • Mc Cord J.M. and Fridovitch I. (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055.

    PubMed  CAS  Google Scholar 

  • Mitchell P. (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemic-osmotic type of mechanism; Nature 191, 144–148

    CAS  Google Scholar 

  • Morehouse K.M. and Mason R.P. (1988) The transition-metal — mediated formation of the hydroxyl free radical during the reduction of molecular oxygen by ferredoxin-ferredoxin: NADP+ oxidoreductase. J. Biol. Chem. 263, 1204–11

    PubMed  CAS  Google Scholar 

  • Moslen M.T. (1994) Reactive oxygen species in normal physiology, cell injury and phagocytosis. In Free radicals in diagnostic and medicine. Armstrong D. (Ed.), Plenum Press, New York, 17–27

    Chapter  Google Scholar 

  • Nappi A.J. and Vass E. (1998) Hydroxyl radical formation resulting from the interaction of nitric oxide and hydrogen peroxide. Biochim. Biophys. Acta 1380, 55–63

    Google Scholar 

  • Oshiro S. and Nakajima H. (1988) Intrahepatocellular site of the catabolism of haem and globin moiety of haemoglobin — haptoglobin after intravenous administration to rats. J. Biol. Chem. 263, 16032–16038

    PubMed  CAS  Google Scholar 

  • Packer L. (Ed.) Nitric oxide, Methods in Enzymol. (1999), Academic Press, London, New York, vol 301

    Google Scholar 

  • Parks D.A. and Granger D.N. (1989) Xanthine oxidase: Biochemistry, distribution and physiology. Acta Physiol. Scand., Suppl. 548, 87–99

    Google Scholar 

  • Piette J. (1991) Biologicalconsequences associated with DNA oxidation mediated by singlet oxygen. J. Photochem. Photobiol., B: Biol., 11, 241–260.

    Article  CAS  Google Scholar 

  • Reiter R.J., ChenL.D., Poeggeler B., Barlow-Walden L., Sewerynek E. and Melcchiorri D. (1996) Antioxidants actions of melatonin and structurally related compouds. In: Handbook of Antioxidants. Cadenas E. and Packer L. (eds), Marcel Dekker, New York, pp. 513–541

    Google Scholar 

  • Reiter R.J. (1998) Oxidative damage in the central nervous system: protection by melatonin. Progr. In Neurobiol. 56, 359–384

    Article  CAS  Google Scholar 

  • Rice-Evans C.A. and Burdon R.H. (Eds) Free radical damage and its control. (1994) Elsevier Science B.V., Amsterdam

    Google Scholar 

  • Schraufstatter I., Hyslop P.A., Jackson J.H. and Cochrane C.G. (1988) Oxidant-induced DNA damage of target cells. J. Clin. Invest. 82, 1040–1050

    Article  PubMed  CAS  Google Scholar 

  • Schreck R. and Bauerle P.A. (1991) A role of oxygen radical as second messenger. Trends Cell Biol. 1, 39–42

    Article  PubMed  CAS  Google Scholar 

  • Schürmann P. (1995) Ferredoxin: thioredoxin system. Methods in Enzymol., Packer L. (Ed.) Academic Press, London, New York, 252, 274–283

    Google Scholar 

  • Sies H., de Groot H. (1992) Role of reactive oxygen species in cell toxicity, Toxicoll. Lett. Dec 64–65 Spec No 547–551

    Google Scholar 

  • Sies H. (1993) Strategies of antioxidative defence. Eur. J. Biochem. 215, 213–219

    Article  PubMed  CAS  Google Scholar 

  • Tan D.X., Chen L.D., Poeggeler B., Manchester L.C. and Reiter R.J. (1993a) Melatonin: a potent endogenous hydroxyl radical scavenger. Endocrine J. I, 57–60

    Google Scholar 

  • Tan D.X., Manchester L.C., Reiter R.J., Plummer B.F., Hardies R.J., Weintraub S.T., Vijayalaxmi, Shepherd A.M.M. (1998) A novel melatonin metabolite: cyclichydroxymelatonin: a biomarker of in vivo hydroxyl radical generation. Biochem. Biophys. Res. Commun. 253, 614–620

    Article  PubMed  CAS  Google Scholar 

  • Temple B. (1998) A bridge to control, Science, 279, 1655–1656

    Article  Google Scholar 

  • Thomas J.P., Geiger P.G., Maiorino M., Ursini F. and Girotti A.W. (1990) Enzymatic reduction of phospholipid and cholesterol hydroperoxides in artificial bilayers and lipoproteins. Biochim. Biophys. Acta 1045, 252–260

    Article  PubMed  CAS  Google Scholar 

  • Vaz A.D. and Coon M.J. (1990) Reductive cleavage of hydroperoxides by cytochrome P-450. In Meth. in Enzymol. 186, 278–282, Academic Press

    Google Scholar 

  • Wikström M. and Saraste M. (1984) The mitochondrial respiratory chain. In Bioenergetics, L. Ernster, ed., New Comprehensive Biochemistry, vol 19, Elsevier, pp. 49–92.

    Chapter  Google Scholar 

  • Winterbourn C.C. (1991) Free radical biology of iron. In Trace elements, micronutrients and free radicals. Dreosti I.E. (Ed). Humana Press, Totowa, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thérèse Vanden Driessche Jean-Luc Guisset Ghislaine M. Petiau-de Vries

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Petiau - de Vries, G.M., Baeyens - Volant, D. (2000). The Biochemistry of Redox Reactions. In: Driessche, T.V., Guisset, JL., Petiau-de Vries, G.M. (eds) The Redox State and Circadian Rhythms. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9556-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9556-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5516-3

  • Online ISBN: 978-94-015-9556-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics