Skip to main content
  • 218 Accesses

Abstract

The living organisms resist/tolerate heavy metal stress by several mechanisms. These include efflux of metal ions, redox changes, binding to cell wall, extracellular or intracellular sequestration by peptides/ proteins or other biomolecules and finally storage within vesicular compartments (for reviews, see Baker & Walker, 1990; Brown & Hall, 1990; Shaw, 1990; Verkleij & Schat, 1990; Silver, 1992; Stillman et al., 1992; Winklemann & Winge, 1994). Eukaryotes limit the concentrations of reactive free metal ions by intracellular sequestration. The chelated metal ions may be internalized within intracellular compartments such as vacuoles. Glutathione (GSH) (Singhal et al., 1987), GSH-related phytochelatins (PCs) and cysteine-rich metallothioneins (MTs) (Stillman et al., 1992; Winklemann & Winge, 1994) are the main metal sequestering molecules. GSH appears to be the primary line of defense against metal toxicity in most organisms. The inhibition of GSH synthesis by chemical or genetic means sensitizes the cells to Cd and possibly other metal ions (Singhal et al., 1987; Coblentz & Wolf 1994). A second line of defense against toxic metals is provided by MTs in animals and some yeasts (Stillman et al., 1992; Winklemann & Winge, 1994). The animals lacking functional MT genes are sensitized to Cd toxicity (Masters et al., 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bae, W. & Mehra, R.K. 1997a. Metal-binding characteristics of a phytochelatin analog (Glu-Cys)2Gly. Journal of Inorganic Biochemistry 68: 45–51.

    Article  Google Scholar 

  • Bae, W. & Mehra, R.K. 1998. Properties of glutathione and phytochelatin-capped CdS bionanocrystallites. Journal of Inorganic Biochemistry 69: 33–39.

    Article  CAS  Google Scholar 

  • Bae, W., Abdullah, R., Henderson, D. & Mehra, R.K. 1997. Characteristics of glutathione-capped ZnS nanocrystallites. Biochemical Bipophysics Residue Communication 237 : 16–23.

    Article  CAS  Google Scholar 

  • Baker, A.J.M. & Walker, P.L. 1990. Ecophysiology of metal uptake by tolerant plants. In Shaw, A.J. (ed) Heavy metal tolerance in plants: Evolutionary aspects:155–178 CRC Press. Boca Raton.

    Google Scholar 

  • Barbas, J., Santhanagopalan, V., Blaszczynski, M., Ellis, W.R. Jr., & Winge, D.R. 1992. Conversion in the peptides coating cadmium:sulfide crystallites in Candida glabrata. Journal of Inorganic Biochemistry 48: 95–105.

    Article  CAS  Google Scholar 

  • Berger, J.M., Jackson, P.J., Robinson, N.J., Lujan, L.D. & Delhaize, E. 1989. Studies of product-precursor relationship of poly(gamma-glutamylcysteinyl)glycine biosynthesis in Datura innoxia. Plant Cell Reports 7: 632–635.

    CAS  Google Scholar 

  • Brown, M.T. & Hall, I.R. 1990. Metal tolerance in fungi. In Shaw, A.J. (ed) Heavy metal tolerance in plants: Evolutionary aspects: 95–104 CRC Press,

    Google Scholar 

  • Coblenz, A. & Wolf, K. 1994. The role of glutathione biosynthesis in heavy metal resistance in the fission yeast Schizosaccharomyces pombe. Ferns Microbiology Reviews 14: 303–308.

    Article  CAS  Google Scholar 

  • Dameron, C.T. & Winge, D.R. 1990. Characterization of peptide-coated cadmium-sulfide crystallites. Inorganic Chemistry 29: 1343–1348.

    Article  CAS  Google Scholar 

  • Dameron, C.T., Reese, R.N., Mehra, R.K., Kortan, A.R., Carrol, P.J., Steigerwald, M.L., Brus, L.E. & Winge, D.R. 1989a. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338: 596–598.

    Article  CAS  Google Scholar 

  • Dameron, C.T., Smith, B.R. & Winge, D.R. 1989b. Glutathione-coated cadmium-sulfide crystallites in Candida glabrata. Journal of Biology & Chemistry 264: 17355–17360.

    CAS  Google Scholar 

  • de Knecht, J.A., van Baren, N., Bookum, W.M.T., Sang, H.W.W.F., Koevoets, P.L.M., Schaat, H. & Verkleij, J.A.C. 1995. Synthesis and degradation of phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Plant Science 106: 9–18.

    Article  Google Scholar 

  • Grill, E. 1989. In Hamer, D.H. & Winge, D.R. (eds) Metal Ion Homeostasis: Molecular Biology and Chemistry 283–300. A.R. Liss, Inc., N.Y.

    Google Scholar 

  • Grill, E., Loffler, S., Winnacker, E.-L. & Zenk, M.H. 1989. Phytochelatins, the heavy metal-binding peptides of plants, are synthesized from glutathione by a specific (- glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proceedings of National Academy of Sciences 863: 6838–6842.

    Article  Google Scholar 

  • Hayashi, Y. & Mutoh, N. 1994. Cadystin (phytochelatin) in fungi. In Winkleman, G. & Winge D.R. (eds) Metal ions in fungi: 311–338 D.R. Marcel Dekker Inc.

    Google Scholar 

  • Hayashi, Y., Nakagawa, C.W., Mutoh, N., Isobe, M. & Goto, T. 1991. Two pathways in the biosynthesis of cadystins (γ -EC)n G in the cell free system of fission yeast. Biochemistry & Cell Biology 69: 115–121.

    Article  CAS  Google Scholar 

  • Howden, R., Goldsbrough, P.B., Andersen, C.R. & Cobbett, CS. 1995a. Cadmium-sensitive, cadl mutants of Arabidopsis thaliana mutants are phytochelatin deficient. Plant Physiology 107: 1059–1066.

    Article  CAS  Google Scholar 

  • Howden, R., Andersen, C.R., Goldsbrough, P.B., & Cobbett, C.S. 1995b. A cadmium-sensitive glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiology 107: 1067–1073.

    Article  CAS  Google Scholar 

  • Jiang, D. T., Heald, S. M., Sham, T. K., & Stillman, M. J. 1994. Structures of the cadmium, mercury, and zinc thiolate clusters in metallothionein: XAFS study of Zn-7-MT, CD-7-MT, Hg-7-MT, and Hg-18-MT formed from rabbit liver metallothionein 2. Journal of American Chemical Society 116: 11004–11013.

    Article  CAS  Google Scholar 

  • Klapheck, S., Fliegner, W. & Zimmer, I. 1994. Hydroxymethyl phytochelatins [(γ-glutamylcysteine)n-serine] are metal-induced peptides of Poaceae. Plant Physiology 104: 1325–1332.

    Article  CAS  Google Scholar 

  • Kneer, R. & Zenk, M. H. 1997. The formation of Cd-phytochelatin complexes in plant cell cultures. Phytochemistry (Oxford) 44: 69–74.

    Article  CAS  Google Scholar 

  • Kneer, R., Kutchan, T.M., Hochberger, A. & Zenk, M.H. 1992. Saccharomyces cerevisiae and Neurospora crassa contain heavy metal sequestering phytochelatin. Archives of Microbiology 157: 305–310.

    Article  CAS  Google Scholar 

  • Masters, B.A., Kelly, E.J., Quaife, C.J., Brinster, R.L. & Palmiter, R.D. 1994. Targeted disruption of metallothionein I and II genes increases sensitivity to cadmium. Proceedings of National Academy of Sciences, USA. 91: 584–588.

    Article  CAS  Google Scholar 

  • Mehra, R.K. & Mulchandani, P. 1995. Glutathione-mediated transfer of Cu(I) into phytochelatins. Biochemistry Journal 307: 697–705.

    CAS  Google Scholar 

  • Mehra, R.K. & Tripathi, R.D. 2000. Phytochelatins and metal tolerance. In Agrawal, S.B. & Agrawal, M. (eds) Environmental Pollution & Plant Responses: 367–382, Lewis Publishers, Boca Raton.

    Google Scholar 

  • Mehra, R.K. & Winge, D.R. 1988. Cu(I) binding to the Schizosaccharomycespombe(γ-glutamyl peptides varing in chain length. Archives of Biochemistry & Biophysics 265: 381–389.

    Article  CAS  Google Scholar 

  • Mehra, R.K. & Winge, D.R. 1991. Metal ion resistance in fungi — molecular mechanisms and their regulated expression. Journal of Cellurar Biochemistry 45: 30–40.

    Article  CAS  Google Scholar 

  • Mehra, R. K., V.R. Kodati & Abdullah, R. 1995. Chain-length dependent Pb(II)-coordination in phytochelatins. Biochemistry Biophysics Residue Communications 215: 730–736.

    Article  CAS  Google Scholar 

  • Mehra, R.K., Mulchandani, P. & Hunter, T.C. 1994. Role of CdS quantum crystallites in cadmium resistance in Candida glabrata. Biochemistry Biophysics Residue Communications 200: 1193–1200.

    Article  CAS  Google Scholar 

  • Mehra, R.K., Tarbet, E.B., Gray, W.R. & Winge, D.R. 1988. Metal-specific synthesis of two metallothioneins and (y -glutamyl) pedptides in Candida glabrata. Proceedings of National Academy of Sciences 85: 8815–8819.

    Article  CAS  Google Scholar 

  • Mehra, R.K., Tran, K., Scott, G.W., Mulchandani, P. & Saini, S.S. 1996a. Ag(I)-binding to phytochelatins. Journal of Inorganic Biochemistry 61: 125–142.

    Article  CAS  Google Scholar 

  • Mehra, R.K., Miclat, J., Kodati, R.V., Abdullah, R., Hunter, T.C. & Mulchandani, P. 1996b. Optical spectroscopic and reverse-phase HPLC analyses of Hg(II)-binding to phytochelatins. Biochemistry Journal 314: 73–82.

    CAS  Google Scholar 

  • Meuwly, P., Thibault, P., Schwan, A.L. & Rauser, W.E. 1995. Three families of thiol peptides are induced by cadmium in maize. Plant Journal 7: 391–400.

    Article  CAS  Google Scholar 

  • Mutoh, N. & Hayashi, Y. 1988. Isolation of mutants of Schizosaccharomyces pombe unable to synthesize cadystin, small cadmium-binding peptides. Biochemistry Biophysics Residue Communications 151: 32–39.

    Article  CAS  Google Scholar 

  • Ortiz, D.F., Kreppel, L., Speiser, D.M., Scheel, G., Mcdonald, G & Ow, D. 1992. Heavy metal tolerance in fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO Journal 11: 3491–3499.

    CAS  Google Scholar 

  • Ortiz, D.F., Ruscitti, T., McCue, K.F. & Ow, D.W. 1995. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. Journal of Biological Chemistry. 270: 4721–4728.

    Article  CAS  Google Scholar 

  • Ow, D.W. 1996. Heavy metal tolerance genes: Prospective tools for bioremediation. Resources Conservation and Recycling 18: 135–149.

    Article  Google Scholar 

  • Plocke, D.J. & Kagi, J.H. 1992. Spectral characteristics of cadmium-containing phytochelatin complexes isolated from Schizosaccharomyces pombe. European Journal of Biochemistry 207: 201–205.

    Article  CAS  Google Scholar 

  • Rauser, W.E. 1990. Phytochelatins. Annual Review of Biochemistry 59: 61–86.

    Article  CAS  Google Scholar 

  • Rauser, W. E. 1995. Phytochelatins and Related Peptides — Structure, Biosynthesis, and Function. Plant Physiology 109: 1141–1149.

    Article  CAS  Google Scholar 

  • Reese, R.N. & Winge, D.R. 1988. Sulfide stabilization of the cadmium-(γ-glutamyl peptide complex of Schizosaccharomyces pombe. Journal of Biological Chemistry 263: 12832–12835.

    CAS  Google Scholar 

  • Reese, R.N., Mehra, R.K., Tarbet, B.E. & Winge, D.R. 1988. Studies on the (γ-glutamyl)Cu-binding peptide from Schizosaccharomyces pombe. Journal of Biological Chemistry 263: 4186–4192.

    CAS  Google Scholar 

  • Robinson, N.J., Tommey, A.M., Kuske, C. & Jackson, P.J. 1993. Plant metallothioneins. Biochemistry Journal 295: 1–10.

    CAS  Google Scholar 

  • Shaw, A.J. 1990. Heavy metal tolerance in plants: Evolutionary aspects CRC Press, Boca Raton.

    Google Scholar 

  • Silver, S. 1992. Plasmid-determined metal resistance mechanisms: range and overview. Plasmid 27: 1–3.

    Article  CAS  Google Scholar 

  • Singhal, R.K., Andersen, M.E. & Meister, A. 1987. Glutathione, a first line of defense against cadmium toxicity. Faseb Journal 1: 220–223.

    CAS  Google Scholar 

  • Snowden, K.C., Richards, K. D. & Gardner, R.C. 1995. Aluminum-induced genes: induction by toxic metals, low calcium, and wounding and pattern of expression in root tips. Plant Physiology 107: 341–348.

    CAS  Google Scholar 

  • Speiser, D.M., Ortiz, D.F., Kreppel, L., Scheel, G., McDonald, G. & Ow, D.W. 1992. Purine biosynthetic genes are required for cadmium tolerance in Schizosaccharomyces pombe. Molecular & Cellurar Biology 12: 5301–5310.

    CAS  Google Scholar 

  • Steffens, J.C. 1990. The heavy metal-binding peptides of plants. Annual Review of Plant Physiology & Plant Molecular Biology 41: 553–575.

    Article  CAS  Google Scholar 

  • Stillman, M.J., Shaw III, F.C. & Suzuki, K.T. 1992. Metallothioneins. VCH.

    Google Scholar 

  • Strasdeit, H., Duhme, A.-K., Kneer, R., Zenk, M.H., Hermes, C. & Nolting, H.-F. 1991. Evidence for discrete Cd(SCys)4 units in cadmium phytochelatin complexes from EXAFS spectroscopy. Journal of Chemical Society Chem. Communications 16: 1129–1130.

    Article  Google Scholar 

  • Tripathi, R.D., Yunus, M. & Mehra, R.K. 1996. Phytochelatins and phytometallothioneins: The potential of these unique metal detoxifying systems in plants. Physiology & Molecular Biology of Plants 2: 101–104.

    Google Scholar 

  • Verkleij, J.A.C. & Schat, H. 1990. Mechanisms of metal tolerance in higher plants. In Shaw, A.J. (ed) Heavy metal tolerance in plants: Evolutionary aspects: 179–194 CRC Press

    Google Scholar 

  • Vogeli-Lange, R. & Wagner, G.J. 1990. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves — implications of a transport function for cadmium binding peptides. Plant Physiology 92: 1086–1093.

    Article  CAS  Google Scholar 

  • Winklemann, G. & Winge, D.R. 1994. Metal ions in fungi. Marcel Dekker Inc.

    Google Scholar 

  • Zenk, M. H. 1996. Heavy metal detoxification in higher plants — A review. Gene 179: 21–30.

    Article  CAS  Google Scholar 

  • Zhou, J. & Goldsbrough, P.B. 1994. Functional homologs of fungal metallothioneins from Arabidiopsis. Plant cell 6: 875–884.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mehra, R.K. (2000). Biosynthesis and Metal-Binding Characteristics of Phytochelatins. In: Yunus, M., Singh, N., de Kok, L.J. (eds) Environmental Stress: Indication, Mitigation and Eco-conservation. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9532-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9532-2_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5503-3

  • Online ISBN: 978-94-015-9532-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics