Skip to main content

Cadmium Induced Adaptive Response in Plant Cells In vivo — A Possible Model Based on Genotoxicity Studies

  • Chapter
Environmental Stress: Indication, Mitigation and Eco-conservation

Abstract

Protection of genetic material from the damaging effects of environmental pollution is necessary for conservation of the biodiversity. Knowledge on antimutagenesis in order to modulate or mitigate the genotoxic impact of environmental mutagens (genotoxicants), is therefore important. A number of natural as well as synthetic compounds such as ascorbic acid, a-tocopherol, β-carotene, selenium, thiol compounds, butylated hydroxytoluene etc. have been shown to be antimutagenic and therefore exert protection against a variety of genotoxicants (DeFlora & Ramel, 1988). Cells and organisms pre-exposed to a very low non- or sub-toxic dose of a genotoxicant develop inherent adaptive mechanisms enabling themselves to lessen the damaging effects when exposed subsequently to a high toxic dose. This phenomenon is termed as adaptive response. Adaptive response has been shown in bacteria (Samson & Cairns, 1977; Demple & Halbrook, 1983), in higher plants (Rieger et al., 1982) as well as in mammalian cells in vitro (Samson & Schwartz, 1980; Frosina & Abbondandolo, 1985) and in vivo (Farooqi & Kesavan, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, A.J.M. & Walker, P.L. 1990. Ecophysiology of metal uptake by tolerant plants. In Shaw, A. J. (ed) Heavy Metal Tolerance in Plants: Evolutionary Aspects: 155–177. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Baliga, B.S., Pronczak, A.W. & Munro, H.N. 1969. Mechanism of cycloheximide inhibition of protein synthesis in a cell-free system prepared from rat liver. Journal of Biological Chemistry 244: 4480–4489.

    CAS  Google Scholar 

  • Cleaver, J.E. & Thomas, G.H. 1969. Single strand interruptions in DNA and the effects of caffeine in Chinese hamster cells irradiated with ultraviolet light. Biochemistry and Biophysics Research Communication 36: 203–208.

    Article  CAS  Google Scholar 

  • Conger, B.V. 1975. Radioprotective effects of ascorbic acid in barley seeds. Radiation Botany 15: 39–48.

    Article  Google Scholar 

  • DeFlora, S. & Ramel, C. 1988. Mechanisms of inhibitors of mutagenesis and carcinogenesis. Classification and overview. Mutation Research 202: 285–306.

    Article  CAS  Google Scholar 

  • DeFlora, S., Bennicelli, C. & Bagnasco, M. 1994. Genotoxicity of mercury compounds. A review. Mutation Research 317: 57–79.

    Article  CAS  Google Scholar 

  • Degraeve, N. 1981. Carcinogenic, teratogenic and mutagenic effects of cadmium, Mutation Research 86: 115–135.

    Article  CAS  Google Scholar 

  • Delhaize, E., Jackson, P.J., Lujan, L.D. & Robinson, N.J. 1989. Poly (γ-glutamyl cysteinyl) glycine synthesis in Datura innoxia and binding with cadmium. Plant Physiology 89: 700–706.

    Article  CAS  Google Scholar 

  • Demple, B. & Halbrook, J.H. 1983. Inducible repair of oxidative DNA damage in Escherichia coli. Nature 304: 466–468.

    CAS  Google Scholar 

  • Evans, J.H. & Scott, D. 1964. Influence of DNA synthesis on the production of chromatid aberrations by X-ray and maleic hydrazide in Vicia faba. Genetics 49:17–38.

    CAS  Google Scholar 

  • Farooqi, Z. & Kesavan, P.C. 1993. Low-dose radiation — induced adaptive response in bone marrow cells of mice. Mutation Research 302: 83–89.

    CAS  Google Scholar 

  • Fishbein, L., Flamn, W.G. & Falk, H.L. 1970. Chemical Mutagens: Environmental Effects on Biological Systems. Academic Press, New York.

    Google Scholar 

  • Freese, E. & Bautz-Freese, E. 1966. Mutagenic and inactivating DNA alterations, Radiation Research Supplement 6: 97–140.

    Article  Google Scholar 

  • Frosina, G. & Abbondandolo, A. 1985. The current evidence for an adaptive response to alkaylating agents in mammalian cells with special reference to experiments with in vitro cultures. Mutation Research 154:85–100.

    Article  CAS  Google Scholar 

  • Grill, E., Winnacker, E.L. & Zenk, M.H. 1987. Phytochelatins, a class of heavy metal binding peptides from plants are functionally analogous to metallothioneins. Proceedings National Academy of Sciences, USA. 84:439–443.

    Article  CAS  Google Scholar 

  • Hartwig, A. 1994. Role of DNA repair inhibition in lead and cadmium-induced genotoxicity: A review. Environmental Health Perspective 102:45–50.

    CAS  Google Scholar 

  • Hirt, H., Casari, G. & Barta, A. 1989. Cadmium-enhanced gene expression in suspension-cultured cells of tobacco. Planta 179: 414–420.

    Article  CAS  Google Scholar 

  • Hoffman, A.A., & Parsons, P.A. 1995. Environmental stress and evaluation. In. Niernberg, W.A. (ed) Encyclopedia of Environmental Biology Vol. 1: 675–685. Academic Press, New York.

    Google Scholar 

  • Howden, R., Andersen, C.R., Goldsbrough, P.B. & Cobbette, C.S. 1995b. A cadmium-sensitive, glutathione — deficient mutant of Arabidopsis thaliana. Plant Physiology 107:1067–1073.

    Article  CAS  Google Scholar 

  • Howden, R., Goldsbrough, P.B., Andersen, C.R. & Cobbette, C.S. 1995a. Cadmium-sensitive, Cad-1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiology 107:1059–1066.

    Article  CAS  Google Scholar 

  • Ikushima, T., Aritomi, H. & Morisita, J. 1996. Radioadaptive response: Efficient repair of radiation induced DNA damage in adapted cells. Mutation Research 358:193–198.

    Article  Google Scholar 

  • Jennette, K.W. 1981. The role of metals in carcinogenesis: biochemistry and metabolism. Environmental Health Perspectives 40: 233–252.

    Article  CAS  Google Scholar 

  • Kaina, B., Lohrer, H., Karin, M. & Herrlich, P. 1990. Over expressed human metallothionein II A gene protects Chinese hamster ovary cells from killing by alkylating agents. Proceedings of National Academy of Sciences USA 87: 2710–2714.

    Article  CAS  Google Scholar 

  • Kawanishi, S., Inoue, S. & Yamamoto, K. 1994. Active oxygen species in DNA damage induced by carcinogenic metal compounds. Environmental Health Perspectives 102:17–20.

    CAS  Google Scholar 

  • Kesavan, P.C. & Nadakarni, S. 1977. Modification of radiosensitivity of barley seed by post-treatment with caffeine IV. Effects of moisture content of seed and storage temperature after irradiation. International Journal of Radiation Biology 31: 185–190.

    Article  CAS  Google Scholar 

  • MacNair, M.R 1993. The genetics of metal tolerance in vascular plants. New Phytologist 124: 541–559.

    Article  CAS  Google Scholar 

  • Michaelis, A., Takehisa, S., Rieger, R. & Aurich, O. 1986. Ammonium chloride and zinc sulfate pretreatments reduce the yield of chromatid aberrations induced by TEM and maleic hydrazide in Vicia faba. Mutation Research 173:187–191.

    CAS  Google Scholar 

  • Miller, M.W. & Miller, W.M. 1987. Radiation hormesis in plants. Health Physics 52:606–617.

    Article  Google Scholar 

  • Nakagawa, I., Nishi, E., Naganuma, A. & Ineura, N. 1995. Effect of preinduction of metallothioneins synthesis on clastogenicity of anticancer drugs in mice. Mutation Research 348: 37–48.

    CAS  Google Scholar 

  • Nicoloff, H., Rieger, R., Michaelis, A. & Gecheff, K. 1992. Caffeine prevents the maleic hydrazide-triggered adaptive response in Hordeum vulgare and Vicia faba. Biol. Zent. bl. 111: 114–119.

    CAS  Google Scholar 

  • Nriagu, J.O. 1990. Global metal pollution: Poisoning the biosphere. Environment 32: 7–32.

    Article  Google Scholar 

  • Ochi, T., Ishiguro, T. & Ohsawa, M. 1983. Participation of active oxygen species in the induction of DNA single strand scissions by cadmium chloride in cultured Chinese hamster cells. Mutation Research 122: 169–175.

    CAS  Google Scholar 

  • Panda, K.K., Patra, J., & Panda, B.B. 1997. Persistence of cadmium-induced adaptive response to genotoxicity of maleic hydrazide and methyl mercuric chloride in root meristem cells of Allium cepa L.: Differential inhibition by cycloheximide and buthionine sulfoximine. Mutation Research 389: 129–139.

    Article  CAS  Google Scholar 

  • Patra, J. 1997 Studies on metal induced adaptive response to certain heavy metals and chemical mutagens in plants. Ph.D. Thesis, Berhampur University, Berhampur, India.

    Google Scholar 

  • Patra, J., Lenka, M. & Panda, B.B. 1994. Tolerance and co-tolerance of the grass Chloris barbata Sw. to mercury, cadmium and zinc. New Phytologist 128: 165–171.

    Article  CAS  Google Scholar 

  • Patra, J., Subhadra, A.V. & Panda B.B. 1995. Cycloheximide and buthionine sulfoximine prevent induction of genotoxic adaptation by cadmium salt against methyl mercuric chloride in embryonic shoot cells of Hordeum vulgare L. Mutation Research 348: 13–18.

    CAS  Google Scholar 

  • Purnell, M.R. & Whish, W.J.D. 1980. Novel inhibition of poly (ADP-ribose) synthetase. Biochemistry Journal 185:775–777.

    CAS  Google Scholar 

  • Rauser, W.E. 1990. Phytochelatins. Annual Reviews in Biochemistry 59: 61–86.

    Article  CAS  Google Scholar 

  • Rieger, R., & Michaelis, A. 1993. Combined application of MH and TEM for conditioning treatment simultaneously triggers two protective functions against induction of chromatid aberrations in Vicia faba root tip meristem cells. Mutation Research 302:161–164.

    CAS  Google Scholar 

  • Rieger, R., Michaelis, A. & Nicoloff, H. 1982. Inducible repair processes in plant root tip meristems “Below additivity effects” of unequally fractionated clastogen concentrations. Biol. Zent. Bl. 101: 125–138.

    CAS  Google Scholar 

  • Rieger, R., Michaelis, A. & Takehisa, S. 1989. On adaptive responses of plant meristem cells in vivo — protection against induction of chromatid aberrations. In Obe, G. & Natarajan, A.T. (eds) Chromosomal Aberrations: Basic and Applied Aspects: 163–179. Springer, New York.

    Google Scholar 

  • Rieger, R., Michaelis, A & Takehisa, S. 1990. Involvement of phytochelatins in NiCl — triggered protection against the induction of chromatid aberrations by TEM and MH in Vicia faba root tip meristems? Mutation Research 244: 31–35.

    CAS  Google Scholar 

  • Rieger, R., Michaelies, A., Jovtchev, V. & Nicolova, T. 1993. Copper sulfate and lead nitrate pretreatments trigger “adaptive responses” to the induction of chromatid aberrations by maleic hydrazide (MH) and/or TEM in Vicia faba, Hordeum vulgure, and human peripheral blood lymphocytes. Biol Zent. Bl. 112:18–27.

    CAS  Google Scholar 

  • Rigaud, O. & Moustacchi, E. 1996. Radioadaptation for gene mutation and the possible mechanism of the adaptive response. Mutation Research 358: 127–134.

    Article  Google Scholar 

  • Robinson, N.J. 1990. Metal-binding polypeptides in plants. In Shaw, A. J. (ed) Heavy Metal Tolerance in Plants: Evolutionary Aspects: 195–214. CRC Press, Boca Raton.

    Google Scholar 

  • Robinson, N.J., Tommey, A.M., Kuske, C., & Jackson, P.J. 1993. Plant metallothioneins. Biochemistry Journal 295:1–10.

    CAS  Google Scholar 

  • Robinson, N.J., Ratliff, R.L., Anderson, P.J., Delhaize, E., Berger, J.M. & Jackson, P.J. 1988. Biosynthesis of poly (γ-glutamyl cysteinyl) glycines in cadmium tolerant Datura innoxia (Mill.) cells. Plant Science 56: 197–204.

    Article  CAS  Google Scholar 

  • Samson, L., & Cairns, J. 1977. A new pathway for DNA repair in Escherichia coli. Nature 267: 281–283.

    CAS  Google Scholar 

  • Samson, L. & Schwartz, J.L. 1980. Evidence for an adaptive DNA repair pathway in CHO and human skin fibroblast cell lines. Nature 287: 861–863.

    Article  CAS  Google Scholar 

  • Sankaranarayan, K., Duyn, A.V., Loos, M.J. & Natarajan, A.T. 1989. Adaptive response of human lymphocytes to a low level radiation from radioistopes or X-rays. Mutation Research 211: 7–12.

    Article  Google Scholar 

  • Scheller, H.V., Huang, B., Hatch, E. & Goldsbrough, P.B. 1987. Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells. Plant Physiology 85: 1031–1035.

    Article  CAS  Google Scholar 

  • Smith, I.K., Polle, A. & Rennenberg, H. 1990. Glutathione. In Alscher, R.G. & Cumming, J.R. (eds) Stress Responses in Plants: Adaptation and Acclimation Mechanisms’. 201–215.Wiley-Liss, New York.

    Google Scholar 

  • Stebbing, A.R.D. 1982. Hormesis — the stimulation of growth by low levels of inhibitors. Science of The Total Envrionment 22: 213–234.

    Article  CAS  Google Scholar 

  • Steffens, J.C. 1990 Heavy metal stress and the phytochelatin response. In Alscher, R.G. & Cumming, J.R. (eds) Stress Responses in Plants: Adaptation and Acclimation Mechanisms: 377–394. Wiley-Liss, New York.

    Google Scholar 

  • Subhadra, A.V., & Panda, B.B. 1992. Modulation of methyl mercuric chloride through pre-exposure of root meristematic cells to low concentration of methyl mercuric chloride, maleic hydrazide and hydrogen peroxide in Allium MNC assay. Biol. Zent. bl.111: 120–129.

    CAS  Google Scholar 

  • Subhadra, A.V., & Panda, B.B. 1994. Metal-induced genotoxic adaptation in barley (Hordeum vulgare L.) to maleic hydrazide and methyl mercuric chloride. Mutation Research 321: 93–102.

    Article  CAS  Google Scholar 

  • Subhadra, A.V., Panda, K.K. & Panda, B.B. 1993. Residual mercury in seed of barley (Hordeum vulgare L.) confers genotoxic adaptation to ethyl methane sulfonate, maleic hydrazide, methyl mercuric chloride and mercury contaminated soils. Mutation Research 300: 141–149.

    Article  CAS  Google Scholar 

  • Thornalley, P.J., & Vasak, M. 1985. Possible roles of metallothioneins in protection against radiation — induced oxidative stress. Kinetics and mechanisms of its reaction with superoxide and hydroxyl radicals. Biochemistry and Biophysics Acta. 827: 36–44.

    Article  CAS  Google Scholar 

  • Tomsett, A.B., Sewell, A.K., Jones, S.J., deMiranda, J.R., & Thurman, D.A. 1992. Metal-binding proteins and metal-regulated gene expression in higher plants. In Wray, J.L. (ed) Inducible Plant Proteins: Their Biochemistry and Molecular Biology. 1–24. Cambridge University Press., Cambridge.

    Chapter  Google Scholar 

  • Verkleij, J.A.C., Lolkema, P.L., DeNeeling, A.L. & Harmens, H. 1991. Heavy metal resistance in higher plants. In Rozema, J. & Verkleij, J.A.C. (eds) Ecophysiologial Responses to Environmental Stresses: 8–19. Kluwer Academic Publishers, Amsterdam.

    Chapter  Google Scholar 

  • WHO 1990. Methyl mercury, Environmental Health Criteria, No. 101, World Health Organization, Geneva.

    Google Scholar 

  • Wolff, S., Olivieri, G. & Afzal, V. 1989. Adaptation of human lymphocytes to radiation or chemical mutagens: Differences in cytogenic repair. In Obe, G. & Natarajan, A.T. (eds) Chromosomal Aberrations: Basic and Applied Aspects: 140–150. Springer, New York.

    Google Scholar 

  • Zhou, J., & Goldsbrough, P.B. 1994. Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6: 875–884.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Panda, B.B., Patra, J., Panda, K.K. (2000). Cadmium Induced Adaptive Response in Plant Cells In vivo — A Possible Model Based on Genotoxicity Studies. In: Yunus, M., Singh, N., de Kok, L.J. (eds) Environmental Stress: Indication, Mitigation and Eco-conservation. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9532-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9532-2_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5503-3

  • Online ISBN: 978-94-015-9532-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics