Skip to main content

Structure and Function of Actin Filaments in Mature Guard Cells

  • Chapter
Book cover Actin: A Dynamic Framework for Multiple Plant Cell Functions

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 89))

Abstract

Recently, actin filaments in mature kidney-shaped guard cells of many plants have been shown using diverse methodologies. Interestingly, the arrangements of cortical actin filaments showed close similarities. Moreover, there has been evidence suggesting their roles in signal transduction. We review these recent data and draw a model for the function of cortical actin filaments in guard cells in daily stomatal movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Assmann SM (1993) Signal transduction in guard cells. Annu Rev Cell Biol 9: 345–375

    Article  PubMed  CAS  Google Scholar 

  • Battey NH, James NC, Greenland AJ and Brownlee C (1999) Exocytosis and endocytosis. Plant Cell 11: 643–659

    PubMed  CAS  Google Scholar 

  • Cantiello HF and Prat AG (1996) Role of actin filament organization in ion channel activity and cell volume regulation. In: Nelson WJ (ed) Current Topics in Membrane, Vol 43: Membrane Protein-Cytoskeleton Interactions. San Diego: Academic Press, pp 373–396

    Chapter  Google Scholar 

  • Geary AL and Mathesius U (1996) Rearrangements of F-actin during stomatogenesis visualised by confocal microscopy in fixed and permeabilised Tradescantia leaf epidermis. Bot Acta 109: 15–24

    Google Scholar 

  • Eun S-O and Lee Y (1997) Actin filaments of guard cells are reorganized in response to light and abscisic acid. Plant Physiol 115: 1491–1498

    Article  PubMed  CAS  Google Scholar 

  • Eun S-O and Lee Y (2000) Stomatal opening by fusicoccin is accompanied by depolymerization of actin filaments in guard cells. Planta, in press

    Google Scholar 

  • Forscher P (1989) Calcium and polyphosphoinositide control of cytoskeletal dynamics. Trends Neuro Sci 12: 468–474

    Article  CAS  Google Scholar 

  • Fox TC and Guerinot ML (1998) Molecular biology of cation transport in plants. Annu Rev Plant Physiol Plant Mol Biol 49: 669–96

    Article  PubMed  CAS  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279: 509–514

    Article  PubMed  CAS  Google Scholar 

  • Hartwig JH, Thelen M, Rosen A, Janmey PA, Nairn AC and Aderem A (1992) MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature 356: 618–622

    Article  PubMed  CAS  Google Scholar 

  • Homann U (1998) Fusion and fission of plasma-membrane material accommodates for osmotically induced changes in the surface area of guard cell protoplasts. Planta 206: 329–333

    Article  CAS  Google Scholar 

  • Hwang J-U, Suh S, Yi H, Kim J and Lee Y (1997) Actin filaments modulate both stomatal opening and inward K+-channel activities in guard cells of Vicia faba L. Plant Physiol 115: 335–342

    PubMed  CAS  Google Scholar 

  • Ibarrondo J, Joubert D, Dufour MN, Cohen-Solal A, Homburger V, Jard S and Guillon G (1995) Close association of the a subunits of Gq and G11 G proteins with actin filaments in WRK1 cells: relation to G protein-mediated phospholipase C activation. Proc Natl Acad Sci USA 92: 8413–8417

    Article  PubMed  CAS  Google Scholar 

  • Kandzari DE, Chen J and Goldshmidt-Clermont PJ (1996) Regulation of the actin cytoskeleton by inositol phospholipid pathways. Subcell Biochem 26: 97–114

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Hepler PK, Eun S-O, Ha KS and Lee Y (1995) Actin filaments in mature guard cells are radially distributed and involved in stomatal movement. Plant Physiol 109: 1077–1084

    PubMed  CAS  Google Scholar 

  • Kost B, Spielhofer P and Chua N-H (1998) GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J 16: 393–401

    Article  PubMed  CAS  Google Scholar 

  • Lin K-M, Wenegieme E, Lu P-J, Chen C-S and Yin HL (1997) Gelsolin binding to phosphatidylinositol 4,5-bisphosphate is modulated by calcium and pH. J Biol Chem 272: 20443–20450

    Article  PubMed  CAS  Google Scholar 

  • Liu K and Luan S (1998) Voltage-dependent K+ channels as targets of osmosensing in guard cells. Plant Cell 10: 1957–1970

    PubMed  CAS  Google Scholar 

  • MacRobbie EA (1998) Signal transduction and ion channels in guard cells. Philos Trans R Soc Lond B Biol Sci 353: 1475–1488

    Article  PubMed  CAS  Google Scholar 

  • Menzel D, Vugrek O, Frank S and Elsner-Menzel C (1995) Protein phosphatase 2A, a potential regulator of actin dynamics and actin-based organelle motility in the green alga Acetabularia. Eur J Cell Biol 67: 179–187

    PubMed  CAS  Google Scholar 

  • Okada Y (1999) A scaffolding for regulation of volume-sensitive Cl- channels. J Physiol (Lond) 520: 2

    Article  CAS  Google Scholar 

  • Putnam-Evans C, Harmon A, Palevitz BA, Fechheimer M and Cormier MJ (1989) Calcium-dependent protein kinase is localized with F-actin in plant cells. Cell Motil Cytoskel 12: 12–24

    Article  CAS  Google Scholar 

  • Rijken PJ, van Hall GJ, van der Heyden MA, Verkleij AJ and Boonstra J (1998) Actin polymerization is required for negative feedback regulation of epidermal growth factor-induced signal transduction. Exp Cell Res 243: 254–262.

    Article  PubMed  CAS  Google Scholar 

  • Seagull RW (1990) The effects of microtubule and microfilament disrupting agents on cytoskeletal arrays and wall deposition in developing cotton fibers. Protoplasma 159: 44–59

    Article  CAS  Google Scholar 

  • Staiger CJ (2000) Signaling to the actin cytoskeleton in plants. Annu Rev Plant Physiol Plant Mol Biol 51: 257–288

    Article  PubMed  CAS  Google Scholar 

  • Trewavas A (1999) How plants learn. Proc Natl Acad Sci USA 96: 4216–4218

    Article  PubMed  CAS  Google Scholar 

  • Wakelam MJ, Hodgkin MN, Martin A and Saqib K (1997) Phospholipase D. Semin Cell Dev Biol 8: 305–310

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

C. J. Staiger F. Baluška D. Volkmann P. W. Barlow

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hwang, JU., Eun, SO., Lee, Y. (2000). Structure and Function of Actin Filaments in Mature Guard Cells. In: Staiger, C.J., Baluška, F., Volkmann, D., Barlow, P.W. (eds) Actin: A Dynamic Framework for Multiple Plant Cell Functions. Developments in Plant and Soil Sciences, vol 89. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9460-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9460-8_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5504-0

  • Online ISBN: 978-94-015-9460-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics