Skip to main content

Verifying Bioremediation. How Do I Know If It Is Taking Place?

  • Chapter
Bioremediation

Abstract

Bioremediation technology is analogous to all other technologies that gradually become accepted by society. Bioremediation is based on fundamental scientific and engineering principles that are translated into applications that reliably serve the public good. All technologies (from airplanes to automobiles to electric lights to personal computers) traverse various developmental stages — each of unpredictable duration, that include conception, proof of concept, prototype development, scale up, design refinements, applications testing, and marketing (among others). Implicit in the title of this chapter is the fact that many applications of bioremediation technology are still in their infancy. Bioremediation still needs quality control — this technology still needs to define its boundaries between promise and reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggarwal, P.K. and Hinchee, R.E. (1991) Monitoring in situ biodegradation of hydrocarbons by using stable carbon isotopes, Environ. Sci. Technol. 25, 1178–1180.

    Article  CAS  Google Scholar 

  • Alexander, M. (1999) Biodegradation and Bioremediation, 2nd edition, Academic Press, New York. Alleman, B.C. and Leeson, A. (eds.) (1999) Natural Attenuation of Chlorinated Solvents, Petroleum Hydrocarbons, and Other Organic Compounds, Battelle Press, Columbus, Ohio.

    Google Scholar 

  • American Public Health Association (APHA) (1992) Standard Methods for the Examination of Water and Wastewater, 18th edition, A.E. Greenberg, L.S. Clesceri and A.D. Eaton (eds.), Washington, DC.

    Google Scholar 

  • Atlas, R.M. and Cemiglia, C.E. (1995) Bioremediation of petroleum pollutants, Bioscience 45, 332338.

    Google Scholar 

  • Bekins, B.A., Godsy, E.M. and Goerlitz, D.R. (1993) Modeling steady-state methanogenic degradation of phenols in groundwater, J. Contaminant. Hydrol. 14, 279–294.

    Article  CAS  Google Scholar 

  • Beller, H.R. and Spormann, A.M. (1997) Anaerobic activation of toluene and o-xylene by addition to fumarate in denitrifying strain, T.. 1 Bacteriol. 179, 670–676.

    CAS  Google Scholar 

  • Beller, H.R., Ding, W.H. and Reinhard, M. (1995) Byproducts of anaerobic alkylbenzene metabolism useful as indicators of in situ bioremediation, Environ. Sci. Technol. 29, 2864–2870.

    Article  CAS  Google Scholar 

  • Bouwer, E.J. (1994) Bioremediation of chlorinated solvents using alternative electron acceptors, in R.D. Norris, R.E. Hinchee, R. Brown, P.L. McCarty, L. Semprini, J.T. Wilson, G Kampbell, M. Reinhard, D.J. Bouwer, R.C. Borden, T.M. Vogel, J.M. Thomas and C.H. Ward (eds.), Handbook of Bioremediation, Lewis Publishers, Boca Raton, Florida, pp. 149–175.

    Google Scholar 

  • Bragg, J.R., Prince, R.C., Hamer, E.J. and Atlas, R.M. (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill, Nature 368, 413–418.

    Article  CAS  Google Scholar 

  • British Medical Association (1991) Hazardous Wastes and Human Health, Oxford University Press. New York.

    Google Scholar 

  • Brockman, F.J. (1995) Nucleic-acid-based methods for monitoring the performance of in situ bioremediation, Molec. Ecol. 4, 567–578.

    Article  CAS  Google Scholar 

  • Burlage, R.S. (1997) Emerging technologies: Bioreceptors, biosensors, and microprobes, in C.J. Hurst, G.R. Knudsen, M.J. Mclnemey, L.D. Stetzenbach and M.V. Walter (eds.), Manual of Environmental Microbiology, ASM Press, Washington, DC, pp. 115–123.

    Google Scholar 

  • Burlage, R.S. (1998) Molecular techniques, in R. Burlage, R. Atlas, D. Stahl, G. Geesey and G. Sayler (eds.), Techniques in Microbial Ecology, Oxford University Press, Oxford, pp. 289–334.

    Google Scholar 

  • Chapelle, F.H., Bradley, P.M., Lovley, D.R. and Vroblesky, D.A. (1996) Measuring rates of biodegradation in a contamianted aquifer using field and laboratory methods, Ground Water 34, 691–698.

    Article  CAS  Google Scholar 

  • Chapelle, F.H., Vroblesky, D.A., Woodward, J.C. and Lovley, D.R. (1997) Practical considerations for measuring hydrogen concentrations in groundwater, Environ. Sci. Technol. 31, 2873–2877.

    Article  CAS  Google Scholar 

  • Chiang, C.Y., Salanitro, P.J., Chai, E.Y., Colthart, J.D. and Klein, C.L. (1989) Aerobic biodegradation of benzene, toluene, and xylene in a sandy aquifer–Data analysis and computer modeling, Gr. Wat. 27, 823–834.

    Article  CAS  Google Scholar 

  • Conrad, M.E., Daley, P.F., Fischer, M.L., Buchanan, B.B., Leighton, T. and Kashgarian, M. (1997) Combined 14C and 813C monitoring of in situ biodegradation of petroleum hydrocarbons, Environ. Sci. Technol. 31, 1463–1469.

    Article  CAS  Google Scholar 

  • Crawford, R.L. and Crawford, D.L. (eds.) (1996) Bioremediation: Principles and Applications, Cambridge University Press, New York.

    Google Scholar 

  • Davis, G.B., Johnston, C.D., Patterson, B.M., Barber, C., Bennett, M., Sheehy, A. and Dunbavan, M. (1995) Monitoring bioremediation of weathered diesel NAPL using oxygen depletion profiles, in R.E. Hinchee, G.S. Douglas and S.K. Ong (eds.), Monitoring and Verification of Bioremediation Battelle Press, Columbus, Ohio, pp. 115–133.

    Google Scholar 

  • Fennell, D.E., Gossett, J.M. and Zinder, S.H. (1997) Comparison of butyric acid, ethanol, lactic acid, and propionic acid, as hydrogen donors for the reductive dechlorination of tetrachlorethene, Environ. Sci. Technol. 31, 918–926.

    Article  CAS  Google Scholar 

  • Flanagan, W.P. and May, R.J. (1993) Metabolite detection as evidence for naturally occurring aerobic PCB biodegradation in Hudson River sediment, Environ. Sci. Technol. 27, 2207–2212.

    Article  CAS  Google Scholar 

  • Flathman, P.E., Jerger, D.E. and Exner, J.H. (1994) Bioremediation: Field Experience, Lewis Publishers, Boca Raton, Florida.

    Google Scholar 

  • Fleming, J.T., Sanseverino, J. and Sayler, G.S. (1993) Quantitative relationship between naphthalene catabolic gene frequency and expression in predicting PAH degradation in soils, Environ. Sci. Technol. 27, 1068–1074.

    Article  CAS  Google Scholar 

  • Fredrickson, J.K. and Balkwill, D.L. (1998) Sampling and enumeration techniques, in R. Burlage, R. Atlas, D. Stahl, G. Geesey and G. Sayler (eds.), Techniques in Microbial Ecology, Oxford University Press, Oxford, pp. 239–254.

    Google Scholar 

  • Führ, F., Steffens, W., Mittelstaedt, W. and Brumhard, B. (1990) Lysimeter experiments with 14C-labeled pesticides–An agroecosystem approach, in H. Frehse (ed.), Pesticide Chemistry–Advances in Industrial Research, Development, and Legislation. Proceedings of the Seventh International Congress of Pesticide Chemistry (IUPAC), Hamburg, VCH Verlag, Weinheim, Germany, pp. 37–48.

    Google Scholar 

  • Glaser, J.A. and Lamar, R.T. (1995) Lignin-degrading fungi as degraders of pentachlorophenol and creosote in soil, n H.D. Skipper and R.F. Turco (eds.), Bioremediation of Science and Applications Soil Science Society of America, Madison, Wisconsin, pp. 117–133.

    Google Scholar 

  • Grossman, E.L. (1997) Stable carbon isotopes as indicators of microbial activity in aquifers, in C.J. Hurst, G.R. Knudsen, M.J. McInerney, L.D. Stetzenbach and M.V. Walter (eds.), Manual of Environmental Microbiology, ASM Press, Washington, DC, pp. 565–576.

    Google Scholar 

  • Harkness, M.R., McDermott, J.B., Abramowicz, D.A., Salvo, J.J., Flanagan, W.P., Stephen, M.L., Mondello, F.J., May, F.J., Lobos, J.G., Carroll, K.M., Brennan, M.J., Bracco, A.A., Fish, K.M., Warner, G.L., Wilson, P.R., Dietrich, D.K., Lin, D.T., Morgan, C.B. and Gately, W.L. (1993) In situ stimulation of aerobic PCB biodegradation in Hudson River sediments, Science 259, 503507.

    Google Scholar 

  • Heitzer, A. and Sayler, G.S. (1993) Monitoring the efficacy of bioremediation, TIB Tech. 11, 334343.

    Google Scholar 

  • Hemond, H.F. and Fechner, E.J. (1994) Chemical Fate and Transport in the Environment, Academic Press, New York.

    Google Scholar 

  • Höhener, P., Hunkeler, D., Hess, A., Bregnard, T. and Zeyer, J. (1998) Methodology for the evaluation of engineered in situ bioremediation: Lessons from a case study, J. Microbiol. Meth. 32, 179–192.

    Article  Google Scholar 

  • Hopkins, G.D., Munakata, J., Semprini, L. and McCarty, P.L. (1993) Trichloroethylene concentration effects on pilot field-scale in-situ groundwater bioremediation by phenol-oxidizing microorganisms, Environ Sci. Technol. 27, 2542–2547.

    Article  CAS  Google Scholar 

  • Hunkeler, D., Aravena, R. and Buffler, B.J. (1999) Monitoring microbial dechlorination of tetrachloroethylene (PCE) in groundwater using compound-specific stable carbon isotype ratios: Microcosm and field studies, Environ. Sci. Technol. 33, 2733–2738.

    Article  CAS  Google Scholar 

  • Jackson, A.W., Pardue, J.H. and Araujo, R. (1996) Monitoring crude oil mineralization in salt marshes: Use of stable carbon isotope ratios, Environ. Sci. Technol. 30, 1139–1144.

    Article  CAS  Google Scholar 

  • Johnson, B.L. (1997) Hazardous waste: Human health effects, Toxicol. Indus. Hlth. 13, 121–143. Kampbell, D.H., Wiedemeier, T.H. and Hansen, J.E. (1996) Intrinsic bioremediation of fuel contamination in ground water at a field site, J. Hazard. Mats. 49, 197–204.

    Google Scholar 

  • Keith, L.H. (1991) Environmental Sampling and Analysis: A Practical Guide, Lewis Publishers, Boca Raton, Florida.

    Google Scholar 

  • Kim, H., Hemond, H.F., Krumholz, L.R. and Cohen, B.A. (1995) In situ biodegradation of toluene in a contaminated stream. 1. Field studies, Environ. Sci. Technol. 29, 108–116.

    Article  CAS  Google Scholar 

  • Lamar, R.T., Davis, M.W., Dietrich, C.M. and Glaser, J.A. (1994) Treatment of a pentachlorophenoland creosote-contamianted soil using the lignin-degrading fungus Phanerochaete sordida: A field demonstration, Soil Biol. Biochem. 26, 1603–1611.

    Article  CAS  Google Scholar 

  • Landmeyer, J.E., Vroblesky, D.A. and Chapelle, F.H. (1996) Stable carbon isotope evidence of biodegradation zonation in a shallow jet-fuel contaminated aquifer, Environ. Sci. Technol. 30, 1120–1128.

    Article  CAS  Google Scholar 

  • Lang, M.M., Roberts, P.V. and Semprini, L. (1997) Model simulations in support of field scale design and operation of bioremediation based on cometabolic degradation, Ground Water 35, 565–573.

    Article  CAS  Google Scholar 

  • Lee, K., Wong, C.S., Cretney, W.J., Whitney, F.A., Parsons, T.R., Lalli, C.M. and Wu, J. (1985) Microbial response to crude oil and corexit 9527: SEAFLUXES enclosure study, Microb. Ecol. 11, 337–351.

    Article  CAS  Google Scholar 

  • Lerch, R.N., Donald, W.W., Li, Y.-X. and Alberts, E.E. (1995) Hydroxylated atrazine degradation products in a small Missouri stream, Environ. Sci. Technol. 29, 2759–2768.

    Article  CAS  Google Scholar 

  • Lewandowski, G.A. and De Fillipi, L.J. (1998) Biological Treatment of Hazardous Wastes, John Wiley, New York.

    Google Scholar 

  • Li, D.X. (1995) Continuous bioventing monitoring using a new sensor technology, in R.E. Hinchee, G.S. Douglas, S.K. Ong (eds.), Monitoring and Verification of Bioremediation Battelle Press, Columbus, OH, pp. 115–133.

    Google Scholar 

  • Lopez-Avila, V., Barcelo, D., Beckert, W., Goheen, S., Jinno, K. and Keith, L. (1998) Current Protocols in Field Analytical Chemistry, John Wiley and Sons, New York.

    Google Scholar 

  • Lovley, D.R., Chapelle, F.H. and Woodward, J.C. (1994) Use of dissolved H2 concentrations to determine distribution of microbially catalyzed redox reactions in anoxic groundwater, Environ. Sci. Technol. 28, 1205–1210.

    Article  CAS  Google Scholar 

  • Ludwig, P., Huehnerfuss, H., Koenig, W.A. and Gunkel, W. (1992) Gas chromatographic separation of the enantiomers of marine pollutants part 3. Enantioselective degradation of alpha hexachlorocyclohexane and gamma hexacholorocyclohexane by marine microorganisms, Mar. Chem. 38, 13–23.

    Article  CAS  Google Scholar 

  • Luthy, R.G., Aiken, G.R., Brusseau, M.L., Cunningham, S.D., Gshwend, G.M., Pignatello, J.J., Reinhard, M., Traîna, S.J., Weber Jr, W.J. and Westall, J.C. (1997) Sequestration of hydrophobic organic contaminants by geosorbents, Environ. Sci. Technol. 31, 3341–3347.

    Article  CAS  Google Scholar 

  • Maclntyre, W.G., Antworth, C.P., Stauffer, T.B. and Boggs, J.M. (1993) Degradation kinetics of aromatic organic solutes introduced into a heterogeneous aquifer, Water Resour. Res. 29, 40454051.

    Google Scholar 

  • Madigan, M.T., Martinko, J M and Parker, J. (2000) Biology of Microorganisms, 9th edition, Prentice Hall, Upper Saddle River, New Jersey.

    Google Scholar 

  • Madsen, E.L. (1991) Determining in situ biodegradation: Facts and challenges, Environ Sci. Technol. 25, 1662–1673.

    Article  CAS  Google Scholar 

  • Madsen, E.L. (1996) A critical analysis of methods for determining the composition and biogeochemical activities of soil microbial communities in situ, in G. Stotzky and J.-M. Bollag (eds.), Soil Biochemistry, Marcel Dekker, New York, pp. 287–370.

    Google Scholar 

  • Madsen, E.L. (1997a) Theoretical and applied aspects of bioremediation: The influence of microbiological processes on organic compounds in field sites, in R. Burlage, R. Atlas, D. Stahl, G. Geesey and G. Sayler (eds.), Techniques in Microbial Ecology, Oxford University Press, Oxford, pp. 354–407.

    Google Scholar 

  • Madsen, E.L. (1997b) Methods for determining biodegradability, in C.J. Hurst, G.R. Knudsen, M.J. McInerney, L.D. Stetzenbach and M. Walter (eds.), Manual of Environmental Microbiology, ASM Press, Washington, DC, pp. 709–720.

    Google Scholar 

  • Madsen, E.L. (1998) The epistemology of environmental microbiology, Environ. Sci. Technol. 32, 429–439.

    Article  CAS  Google Scholar 

  • Madsen, E.L., Sinclair, J.L. and Ghiorse, W.C. (1991) In situ biodegradation: Microbiological patterns in a contaminated aquifer, Science 252, 830–833.

    CAS  Google Scholar 

  • Maymo-Gatell, X., Chien, Y.T., Gossett, J.M. and Zinder, S.H. (1997) Isolation of a bacterium that reductively dechlorinates tetrachioroethene to ethene, Science 276, 1568–1571.

    Article  CAS  Google Scholar 

  • McCarty, P.L. (1997) Breathing with chlorinated solvents, Science 276, 1521–1522.

    Article  CAS  Google Scholar 

  • McDonald, J.A. and Rittmann, B.E. (1993) Performance standards for in situ bioremediation, Environ. Sci. Technol. 27, 1974–1979.

    Article  Google Scholar 

  • National Research Council (NRC) (1993) In situ Bioremediation: When Does It Work? National Academy Press, Washington, DC.

    Google Scholar 

  • National Research Council (NRC) (2000) Natural Attenuation for Groundwater Remediation, National Academy Press, Washington, DC.

    Google Scholar 

  • Norris, R.D., Hinchee, R.E., Brown, R., McCarty, P.L., Semprini, L., Wilson, J.T., Kampbell, D.G., Reinhard, M., Bouwer, D.J., Borden, R.C., Vogel, T.M., Thomas, J.M. and Ward, C.H. (1994) Handbook of Bioremediation, Lewis Publishers, Boca Raton, Florida.

    Google Scholar 

  • Ogram, A., Sun, W., Brockman, F.J. and Fredrickson, J.K. (1995) Isolation and characterization of RNA from low-biomass deep-subsurface sediments, Appl. Environ. Microbial. 61, 763–768.

    CAS  Google Scholar 

  • Paigen, B. and Goldman, L.R. (1987) Lessons from Love Canal New York USA: The role of the public and the use of birth weight, growth and indigenous wildlife to evaluate health risk, in J.B. Andelman and D.W. Underhill (eds.), Health Effects from Hazardous Waste Sites, Lewis Publishers, Chelsea, Michigan, pp. 177–192.

    Google Scholar 

  • Pfiffner, S.M., Palumbo, A.V., Phelps, T.J. and Hazen, T.C. (1997) Effects of nutrient dosing on subsurface methanotrophic populations and trichloroethylene degradation, J. Ind. Microbial. Biotechnol. 18, 204–212.

    Article  CAS  Google Scholar 

  • Prince, R.C., Elmendorf, D.L., Lute, J.R., Hsu, C.S., Halth, C.E., Senius, J.D., Dechert, G.J., Douglas, G.S. and Butler, E.L. (1994) 17 a(H)-21ß(H)-hopane as a conserved internal marker for estimating the biodegradation of crude oil, Environ. Sci. Technol. 28, 142–145.

    Google Scholar 

  • Pritchard, P.H. and Costa, C.F. (1991) EPASs Alaska oil spill bioremediation project, Environ. Sci. Technol. 25, 372–379.

    Article  CAS  Google Scholar 

  • Quensen III, J.F. and Tiedje, J.M. (1997) Methods for evaluation of PCB dechlorination in sediments, in D. Sheehan (ed.), Methods in Biotechnology, 2. Bioremediation Protocols Humana Press, Totowa, New Jersey, pp. 241–253.

    Chapter  Google Scholar 

  • Raymond, R.L., Hudson, J.O. and Jamison, V.W. (1976) Oil degradation in soil, Appl. Environ. Microbiol. 31, 522–535.

    CAS  Google Scholar 

  • Rifai, H.S., Newell, C.J., Miller, R.N., Taffinder, S., Rounsaville, M. (1995a) Simulation of natural attenuation with multiple electron acceptors, in R.E. Hinchee, J.T. Wilson and D.C. Downey (eds.), Intrinsic Bioremediation Battelle Press, Columbus, Ohio, pp. 53–58.

    Google Scholar 

  • Rifai, H.S., Borden, R.C., Wilson, T.J. and Ward, C.H. (1995b) Intrinsic bioattenuation for subsurface restoration, in R.E. Hinchee, J.T. Wilson and D.C. Downey (eds.), Intrinsic Bioremediation, Battelle Press, Columbus, Ohio, pp. 1–29.

    Google Scholar 

  • Rittmann, B.E., Seagren, E., Wrenn, B.A., Valocchi, A.J., Ray, C. and Faskin, L. (1994) In situ Bioremediation, 2nd edition, Noyes Publications, Park Ridge, New Jersey.

    Google Scholar 

  • Robertson, W.D. (1994) Chemical fate and transport in a domestic septic system: Site description and attenuation of dichlorobenzene, Environ. Toxicol. Chem. 13, 183–191.

    Article  CAS  Google Scholar 

  • Salanitro, J.P. (1993) The role of bioattenuation in the management of aromatic hydrocarbon plumes in aquifers, Ground Wat. Monit. Remed. 13, 150–161.

    Article  CAS  Google Scholar 

  • Schlegel, H.G. and Jannasch, H.W. (1992) Prokaryotes and their habitats, in A. Balows, H.G. Trüper, M. Dworkin, W. Harder and K.-H. Schleifer (eds.), The Prokaryotes, Vol. 1 Springer-Verlag, New York, pp. 75–125.

    Google Scholar 

  • Selvaratnam, S., Schoedel, B.A., McFarland, B.L. and Kulpa, C.F. (1995) Application of reverse transcriptase PCR for monitoring expression of the catabolic dmpN gene in a phenol-degrading sequencing batch reactor, Appl. Environ. Microbiol. 61, 3981–3985.

    CAS  Google Scholar 

  • Semprini, L. and McCarty, P.L. (1991) Comparison between model simulations and field results for in-situ biorestoration of chlorinated aliphatics. Part 1. Biostimulation of methanotrophic bacteria, Ground Water 29, 365–374.

    Article  CAS  Google Scholar 

  • Semprini, L. and McCarty, P.L. (1992) Comparison between model simulations and field results for in-situ biorestoration of chlorinated aliphatics. Part 2. Cometabolic transformations, Ground Water 30, 37–44.

    Article  CAS  Google Scholar 

  • Semprini, L., Roberts, P.V., Hopkins, G.D. and McCarty, P.L. (1990) A field evaluation of in-situ biodegradation of chlorinated ethenes: Part 2. Results of biostimulation and biotransformation experiments, Ground Water 28, 715–727.

    Article  CAS  Google Scholar 

  • Semprini, L., Kitanidis, P.K., Kampbell, D.H. and Wilson, J.T. (1995) Anaerobic transformation of chlorinated aliphatic hydrocarbons in a sand aquifer based on spatial chemical distribution, Water Resour. Res. 31, 1051–1062.

    Article  CAS  Google Scholar 

  • Sever, L.E. (1997) Environmental contamination and health effects: What is the evidence, Toxicol. Indus. Hlth. 13, 145–161.

    CAS  Google Scholar 

  • Shannon, M.J.R. and Unterman, R. (1993) Evaluating bioremediation: Distinguishing fact from fiction, Ann. Rev. Microbiol. 47, 715–738.

    Article  CAS  Google Scholar 

  • Shields, M.S. and Francesconi, S.C. (1996) Molecular techniques in bioremediation, in R.L. Crawford and D.L. Crawford (eds.), Bioremediation: Principles and Applications, Cambridge University Press, New York, pp. 341–390.

    Chapter  Google Scholar 

  • Skipper, H.D. and Turco, R.F. (eds.) (1995) Bioremediation Science and Applications, Soil Science Society of America, Madison, Wisconsin.

    Google Scholar 

  • Steffan, R.J., Sperry, K.L., Walsh, M.T., Vainberg, S. and Condee, C.W. (1999) Field scale evaluation of in situ bioaugmentation for remediation of chlorinated solvents, Environ. Sci. Technol. 33, 2771–2791.

    Article  CAS  Google Scholar 

  • Stumm, J J and Morgan, W. (1996) Aquatic Chemistry, 3rd edition, Wiley and Sons, New York. Swannell, P.J., Lee, K. and McDonagh, M. (1996) Field evaluation of marine oil spill bioremediation, Microbiol. Rev. 60, 342–365.

    Google Scholar 

  • Tett, V.A., Willetts, A.J. and Lappin-Scott, H.M. (1994) Enantioselective degradation of the herbicide mecoprop [2-(2-methyl-4-chlorophenoxy)propionic acid] by mixed and pure bacterial cultures, FEMS Microbiol. Ecol. 14, 191–199.

    Article  CAS  Google Scholar 

  • Thierrin, J., Davis, G.B., Barber, C., Patterson, B.M., Pribac, F., Power, T.R. and Lambert, M. (1993) Natural degradation rates of BTEX compounds and naphthalene in a sulphate-reducing groundwater environment, Hydro!. Sci. J. 38, 309–322.

    Article  CAS  Google Scholar 

  • Thierrin, J., Davis, G.B. and Barber, C. (1995) A ground-water tracer test with deuterated compounds for monitoring in situ biodegradation and retardation of aromatic hydrocarbons, Ground Water 33, 469–475.

    Article  CAS  Google Scholar 

  • Waksman, S.A. (1927) Principles of Soil Microbiology, Williams and Wilkins, Baltimore, Maryland. Wickramanayake, G.B. and Hinchee, R.E. (1998) Bioremediation and Phytoremediation: Chlorinated and Recalcitrant Compounds, Battelle Press, Columbus, Ohio.

    Google Scholar 

  • Wiedemeier, T.H., Swanson, M.A., Wilson, J.T., Kampbell, D.H., Miller, R.N. and Hansen, J.E. (1995) Patterns of intrinsic bioremediation at two U.S. Air Force bases, in R.E. Hinchee, J.T.

    Google Scholar 

  • Wilson and D.C. Downey (eds.), Intrinsic Bioremediation Battelle Press, Columbus, Ohio, pp. 31–51.

    Google Scholar 

  • Williams, R.A., Shuttle, K.A., Kunkler, J.L., Madsen, E.L. and Hooper, S.W. (1997) Intrinsic bioremediation in a solvent-contaminated alluvial groundwater, J. Ind. Microbiol. Biotechnol. 18, 177–188.

    Article  CAS  Google Scholar 

  • Wilson, J.T. and Jawson, M.D. (1995) Science needs for implementation of bioremediation, in H.D. Skipper and R.F. Turco (eds.), Bioremediation Science and Applications Soil Science Society of America, Madison, Wisconsin, pp. 293–303.

    Google Scholar 

  • Wilson, M.S. and Madsen, E.L. (1996) Field extraction of a unique intermediary metabolite indicative of real time in situ pollutant biodegradation, Environ. Sci. Technol. 30, 2099–2103.

    Article  CAS  Google Scholar 

  • Wilson, M.S., Bakermans, C.M. and Madsen, E.L. (1999) In situ, real time catabolic gene expression: Extraction and characterization of catabolic mRNA transcripts from groundwater, Appl. Environ. Microbiol. 65, 80–87.

    CAS  Google Scholar 

  • Wolfe, D.A., Hameedi, M.J., Galt, J.A., Watabayashi, G., Short, J., O’Claire, C., Rice, S., Michel, J., Payne, J.R., Braddock, J., Hanna, S. and Sale, D. (1994) The fate of the oil spilled form the Exxon Valdez, Environ. Sci. Technol. 28, 561A - 568A.

    Google Scholar 

  • Yager, R.M., Bilotta, S.E., Mann, C.L. and Madsen, E.L. (1997) Metabolic adaptation and in situ attenuation of chlorinated ethenes by naturally occurring microorganisms in a fractured dolomite aquifer near Niagara Falls, NY, Environ. Sci. Technol. 31, 3138–3147.

    Article  CAS  Google Scholar 

  • Young, L.Y. and Cerniglia, C.E. (eds.) (1995) Microbial Transformation and Degradation of Toxic Organic Chemicals, Wiley-Liss, New York.

    Google Scholar 

  • Zhou, J., Palumbo, A.V. and Tiedje, J.M. (1997) Sensitive detection of a novel class of toluene-degrading denitrifiers, Azoarcus tolulyticus, with small-subunit rRNA primers and probes, Appl. Environ. Microbiol. 63, 2384–2390.

    CAS  Google Scholar 

  • Zipper, C., Nickel, K., Angst, W. and Kohler, H.P. (1996) Complete microbial degradation of both enantiomers of the chiral herbicide mecoprop [(RS)-2-(4-chloro-2-methylhenoxy)propionic acid] in an enantioselective manner by Sphingomonas herbicidevorans sp. nov., Appl. Environ. Microbiol. 62, 4318–4322.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Madsen, E.L. (2000). Verifying Bioremediation. How Do I Know If It Is Taking Place?. In: Valdes, J.J. (eds) Bioremediation. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9425-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9425-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5519-4

  • Online ISBN: 978-94-015-9425-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics